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MAI - DL
● More width than depth

○ CNNs
○ RNNs
○ Transformers
○ Transfer Learning
○ Foundation models
○ HPC

● Some stuff somewhere else
○ Unsupervised (AEs, GANs, Diffusion)
○ RL stuff



MAI - DL

● Theory
○ In width
○ Presentation

● Labs (same room)
○ CNN (interview)
○ TL (interview)
○ HPC (ask Marc)

● Grade = 75% (3xLab) + 25% Theory



MAI - DL

● For more details
○ https://upc-mai-dl.github.io/
○ dario.garcia@bsc.es
○ marc.casas@bsc.es (HPC)
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What is DL aka RL



What is DL
● Add more parameters without breaking it

Resilient arch.

Regularization

Data volume



A Bit of History
The not so distant origin story



Connectionism & Hebbian Learning

Warren McCulloch & Walter Pitts (1943):

● From neurons to complex thought
● Binary threshold activations

Howard Hebb (1949):

● “Neurons that fire together wire together”
● Weights yield learning and memory

Ref: [1,31]



w  real-valued weights
·   dot product
b  real scalar constant

Rosenblatt's Perceptron

Rosenblatt (1948): Hebb's learning + McCulloch & Pitts design

Mark I Perceptron

● 400 photosensitive receptors (sensory units)
● 512 stepping motors (association units, trainable)
● 8 output neurons (response units)

[2,3,4,5]

Threshold function



Minsky & Papert: The XOR affair

The perceptron capabilities were limited (Rosenblatt)

“Perceptrons: an introduction to computational geometry” 

(Minsky & Papert, 1969):

● Perceptron cannot learn non-linearities

● Multi-Layer networks cannot be trained

NNs abandoned until mid 80s:  1st AI WINTER

Shift from connectionism to symbolism
[6]



Backpropagation Algorithm

How to optimize weights not directly connected to the error?

Backpropagation algorithm:

● Use the chain rule to find the derivative of cost with respect to any 
variable

Optimization through Gradient Descent

Used for training MLPs in (Werbos in 1974, Rumelhart et al. in 1985)

End of NNs Winter (Begining of 2nd AI Winter)

[7,8]



Feedforward Neural Networks



Optimization & Learning

Training through backprop (1) + gradient descent (2)

● Forward pass

○ Compute output for a given input
○ Error measurement (loss function)

● Backward pass

○ Find gradients minimizing error layer by layer (1)
○ Apply gradients (2)



Gradient Descent

● Backward pass

○ Find gradients minimizing error layer by layer (1)
○ Apply gradients (2)

(1) Given a function (loss), we can compute its slope (gradient) as a 

first-order derivative at the current point

(2) Move in the opposite direction of the slope, to minimize error



The Gradient Descent Family

Batch GD: Compute gradients of all training samples before descending
● Deterministic outcome
● Large memory cost

Stochastic GD: Apply gradient of one random training sample at a time
● Very stochastic
● Does not guarantee learning
● Poor parallelization

Mini-batch GD: Combine gradients of a random subset of train samples
● Mildly Stochastic
● Good parallelization
● Subset size aka “Batch size” WARNING: This naming is 

not universally respected!



Mini-batch Training Nomenclature

Num. samples computed together: The batch size 

One feedforward/backward cycle (one batch): A step

N steps (all training samples once): An epoch



Practical Tips I

Factors for defining the batch size (rarely)
● For large instance size, lower batch sizes
● For more computational efficiency, higher batch sizes
● For more stochasticity, lower batch sizes
● Use batch sizes in the powers of 2

Factors for defining the number of epochs (constantly)
● For better convergence, more epochs
● For more reliability, more epochs
● For less footprint, less epochs



The Manifold Hypothesis

[32a,32b]

Deep Learning is defined by the high input dimensionality

❖ How can we find solutions in such a vast space?

❖ Manifold Hypothesis:

■ We can transform that into a smaller dimensionality “manifold”, in 

which the problem is simplified and interpolation possible.

❖ Each layer in a NN is a different manifold, transforming the space to 

facilitate the target task



The Art of Descending

[32]

Hard to go down in a high dimensional space

❖ Different loss speed among dimensions (weird)

■ Slow and jitter

❖ Local minima & saddle points

■ Stuck gradient

❖ Mini-batches are noisy

■ Back & forth

■ Stochasticity  & 

convergence 



Learning rate: How much you move in the direction of the gradient

Direct effect on convergence and speed

The same LR may not always be the right one

The Speed of Descending



Practical Tips II

Tuning the Learning Rate

● Fix the batch size (or viceversa)

○ Theory: Double one, double the other

● Always smaller than 1

● Search by orders of magnitude

● Grid search < Random search

● In case of doubt, go small

● When stuck, reduce it



Momentum: 
❖ Add fraction of previous gradient (inertia)
❖ Add decaying weight (friction)
❖ Faster, smoother convergence
❖

Nesterov:
❖ Gradient computed after inertia (see slope ahead)
❖ Faster convergence

Inertia in Optimizers

[50]



Inertia in Optimizers

[49]



Adagrad: 

❖ Apply LR to parameter-wise gradients (adaptative)

❖ High LR for infrequent ones. Low LR for frequent ones. 

❖ Good for sparse data.

❖ Accumulates squared gradients. Scales LR by the sqr.

Issues:

❖ Requires initial global LR

❖ Vanishing LR. Stalls

Adaptative LR Optimizers

[33, 48]



Adadelta: 
❖ Use effective LR (past param. update / current gradient)
❖ Max. window (decay avg.)
❖ Requires decay rate (0.9?)

Adam: 
❖ Momentum (Decaying avg of past gradients, mean, beta1)
❖ Adadelta (Decaying avg of past squared gradients, variance, beta2)

Nadam: 
❖ Nesterov + Adadelta

AMSGrad, AdaMax, AdamW, …

Adaptative LR Optimizers

[33,45,46,47,48]



Optimizers

● Adam: Current popular default. Competitive with minimal tuning.

● SGD + Momentum: Great if LR is decayed properly

Practical Tips III

Hyperparameters incomplete list #1 (training)

1. Batch size

2. Number of epochs

3. Learning rate

4. Weight decay 



Activation Functions
Transform the output of a layer to a given range.

❖ Zero gradient most of f(x): Saturates!
❖ Gradient is 0.25 or 1 max. Vanishes!



ReLU is a safe choice in most cases

Undying alternatives: Leaky ReLU, PReLU, ELU, SELU, ...

Activation Functions
Transform the output of a layer to a given range.

❖ Does not saturate
❖ Does not vanish
❖ Faster computation
❖ May die with high LR

■ No learning on negative
■ Weight init, BN, …



❖ But wait, ReLU is linear, and we need non-linearity!

❖ Not exactly. It’s piecewise linear. Composed of two linear functions

❖ ReLU can bend linearity

■ On one point

■ With any angle

❖ Just need a bunch of ReLUs

Why ReLU works

[37c]



❖ But wait, ReLU is linear, and we need non-linearity!

❖ Not exactly. It’s piecewise linear. Can compose both linear and non-linear

❖ ReLU can bend linearity

■ On one point

■ With any angle

❖ Just need a bunch of ReLUs

Why ReLU works

[37c]



ReLU: Composing non-linearity

[30]

ReLU(-4-2x+y) + 
ReLU(4+2x+y) + 
ReLU(5-x-2y)



Input Pre-processing
Make your model’s life easier. Run flat.

Options

❖ Mean substraction
❖ Normalization

■ - mean / std
■ Image-wise?
■ Channel-wise?

Also, beware of the 
imbalance!!



Weight Initialization
We want:

❖ Small numbers

❖ Half positive, half negative

Options :

❖ Constant value: No symmetry breaking.

❖ Zeros: No gradient flow

❖ Gaussian distribution sample: Ok for shallow, but deviation grows with size

❖ Glorot/Xavier: Gaussian with 0 mean. Normalize variance by number of inputs + outputs

❖ He/Kaming/MSRA: Gauss, 0 mean, var. wrt inputs only. Specific for ReLUs (smaller var.).

[37b]

What about bias?

● If weights are properly initialized, 
bias can be zero-init.



Practical Tips IV

● Start with ReLUs. Explore variants as a long shot.

● Always zero-mean the data. Or normalize (init depends on it)

● If using ReLUs, He init. Otherwise Glorot.

Hyperparameters incomplete list #2 (initialization & preprocessing)

5. Activation function

6. Input normalization

7. Weight Initialization



Regularization

Why do we need regularization?

❖ Generalization: Difference between Machine Learning and Optimization

■ We want to learn the “good” patterns

■ Neural nets are lazy. They will always go for the “easy” patterns

■ Generalization is a sweet spot that may be unreachable



From underfit to overfit

Underfit: Insufficient learning of training data patterns

Overfit: “Excessive” learning of training data patterns

Key players:
❖ Model capacity
❖ Data input
❖ Regularizers



Overfit in DL

❖ A necessary evil

❖ Not everything makes sense

❖ Ensembling



Train, Test and Val

Doing a good train/val/test split is not easy!

Training set
❖ Data used by the model for learning 

parameters
❖ Keep an eye for variance (spurious 

patterns)
❖ As large and varied as possible
❖ Use mostly as a sanity check
❖ Overfitting is inevitable

■ Sometimes it’s desirable!

Take your time & do it right.

Validation set
❖ Data used by you for tuning 

hyperparameters
❖ Size entails reliability
❖ Overfitting is possible

Test set
❖ Hide under a rock
❖ Must be 100% independent
❖ Run once. Cite forever.



Practical Tips V

Never, ever, ever

● Mix correlated data in train/val/test

● Process data in an order

■ Do shuffle with seed!

■ Reproducibility for your own sake

● Believe train results generalize

● The dataset is free of bias

● Assume balanced dataset



Practical Tips VI

1. Learn, anything! (Train set)

■ Little capacity makes it easier

■ Rough hyperparameter 

estimation

■ Goal: Underfit

i. Better than random

2. Learn, everything!  (Train set)

■ Growing capacity

■ Hyperparameter refinement

■ Goal: Overfit

3. Learn the right thing  (Val set)

■ Regularization

■ Goal: Fit

Training milestones



Back to Regularization

Takes us from overfit to fit

The must do ones:

❖ Early Stopping
■ Overfitting is the end of the road
■ The guide: Validation loss/accuracy
■ Enough to understand the model (mind the footprint!)

❖ Data Augmentation
■ More data for free
■ Huge impact
■ As any data preprocessing, think thoroughly!



Practical Tips VII

Diagnosing the curves (loss & acc.*)

● Random performance?

● General trend?



Practical Tips VIII

● Fails to converge? No trend?
■ Simplify problem/model. Decrease LR.
■ Data corrupted? Pre-processing? Weight init?

● Loss explosion? Sudden spike?
■ Problematic data instances.
■ Exploding gradients        weights.

● Loss goes down and accuracy goes down (what??)
■ Raw outcome improves, but threshold metric is not met
■ Imbalance?

Weird curves 
are the worst!



Parameter Norm Penalty methods
L2/L1 norm penalize large weights by factor (alpha) added to loss

❖ Keeps weights small

❖ Changes gradients

❖ Alpha too large, underfit. Alpha too small, still overfit.

❖ Conflict with adaptive learning rates (e.g., Adam)

Weight decay add scaled weight in update step

❖ Independent of gradient & learning rate, decreases update

❖ Analogous to L2-norm for SGD, not for adaptative optimizers

❖ Safe for all (if implemented). AdamW (Adam with weight decay) to be sure.

[10,11,12,44]



Max-Norm

Limits the magnitude of the weights vector

❖ Constant c (another hyperparam!)

❖ Typically around 3 or 4

❖ Goes well with dropout

❖ May be redundant with L2-norm/weight decay

[10,11,12]



Batch Normalization

Force activations (samples) within a normal distribution

❖ Shift (add) & scale (mul.) for mean 1 and std dev 0

❖ Applied between neurons and non-linearity activation function

❖ Statistics computed per mini-batch (practical reasons)

❖ On inference, use population of mini-batch statistics

❖ Helps with initialization and regularization

❖ Requires minimum & fixed batch size (does it?)



WIKI: Batch Normalization

❖ Reduces “internal covariate shift” 

❖ Smoother loss landscape

❖ Easier hyperparameter setting

■ Allows higher LR

❖ Faster convergence

❖ Learnable version (affine transformation)

■ Scale (gamma) and shift (beta)

[12a,38,39]



All instances

One channel

Norms, Norms, Norms

One instance

All channels

One instance

One channel

One instance

N channels

And more!!



Dropout

Cut-off neuron inputs with a given probability

❖ Rate (typically [0.2,0.5]) on every step

❖ In practice trains an ensemble of nets

❖ Inference: Use all inputs, scaled by rate

❖ Reduces co-adaptation

❖ Slows down training (a lot)

❖ Affects many other hyperparameters (e.g., before batch norm or maxpool)

❖ Good on FC layers, generally towards the task-specific part of the net

[40]



Dropout variants

❖ Dropconnect: Delete edges instead of neurons

❖ Standout: Rate based on weight (high weight -> high prob.)

❖ Gaussian Dropout: Faster convergence as no neuron is ever fully 

disconnected (Gaussian vs Bernoulli)

❖ Different architectures, different dropouts!

[41,42,43]



Practical Tips IX

One experiment at a time

1. Analysis

■ What is wrong/improvable?

■ How can it be solved/achieved?

2. Test

■ Which alternative works better?

■ Ablation study: Alone or combined?

Underfitting

❏ Initialization

❏ LR, batch size

❏ Complexity up

Overfitting

❏ Regularization

❏ Complexity down



Learning what?

Loss/Cost/Objective/Error function defines the optimization goal

❖ N-way Classification

■ Softmax (outs N probabilities) + Cross-Entropy (in N neurons)

❖ Regression

■ Mean Squared Error (in 1 neuron)

❖ Segmentation (Dice, IoU), contrastive loss (pos/neg distance)

❖ And so many others!



Practical Tips X

Hyperparameters incomplete list #3 (capacity, regularization and loss)

8. Network capacity (layers, neurons)

9. Early stopping policy

10. Data Augmentations

11. Normalization layers + hyperparams

12. Loss function



Next class:
Convolutional Neural Networks
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