

Deep Learning - MAI

Convolutional neural networks

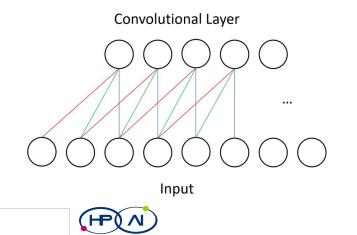
THEORY

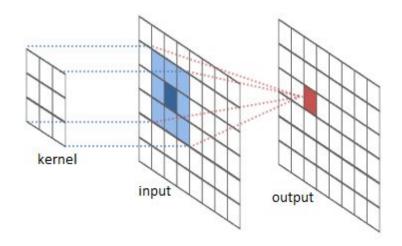
Dario Garcia Gasulla *dario.garcia@bsc.es*

Spatial Connectivity

Some data has spatial correlations that can be exploited

- 1D, 2D, 3D, ...
- Near-by data points are more relevant than far-away.
- Sparsify connectivity to reduce complexity and ease the learning





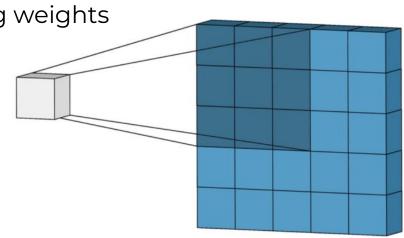
Weight Sharing

Sparse connectivity is nice, but we want to apply filters everywhere.

Each filter will get convolved all over the image: 2D activations matrix

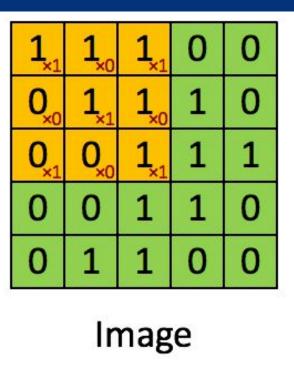
In static we have sets of neurons sharing weights

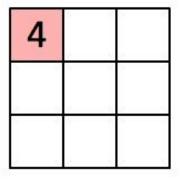
In this context, what is a neuron?



Convolution in Action

Kernel size 3x3 (neuron input = 9)





Convolved Feature

Filter convolution process

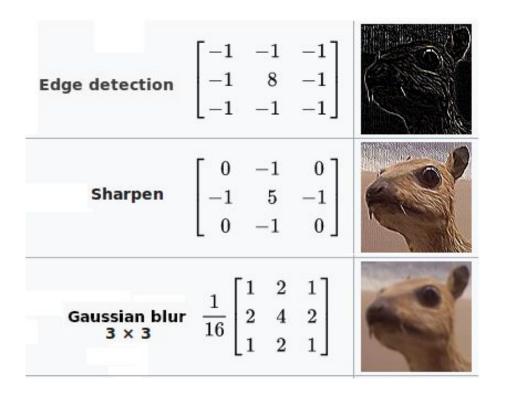
Activations (pre-func.)

R

Image Transformations

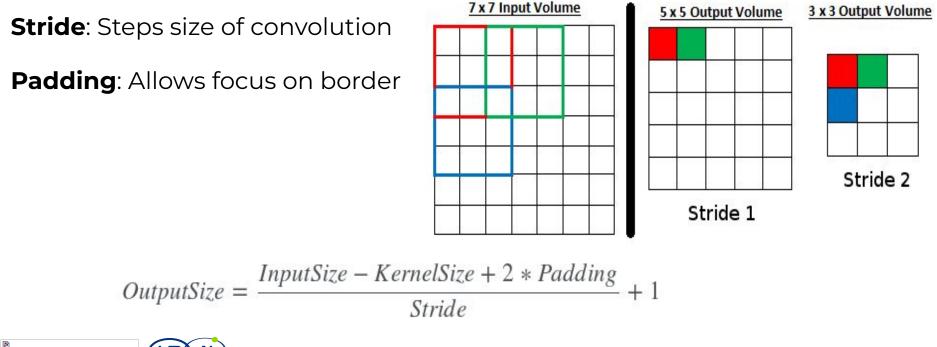
Convolving filters
 transform the image

 Let the model learn the kernels it needs



Convolution Details

Kernel size: Size of the receptive field of convolutional neurons

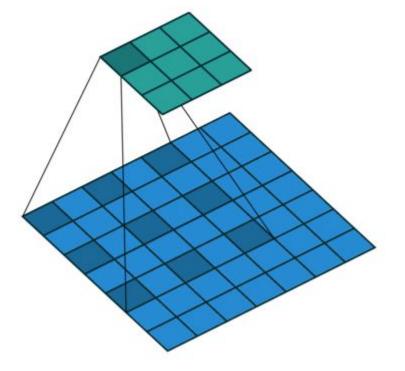


Dilated/Atrous Convolutions

Sparsify the kernel

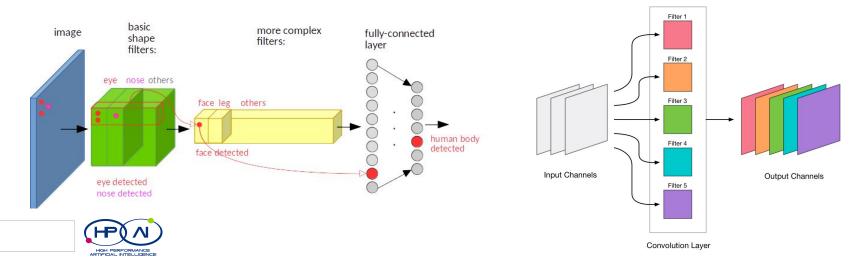
- Increases perceptive field without added complexity
- Loses details, gains context
- Another hyperparam :(
- Used for

- Down/Upsampling (segmentation)
- High Resolution inputs

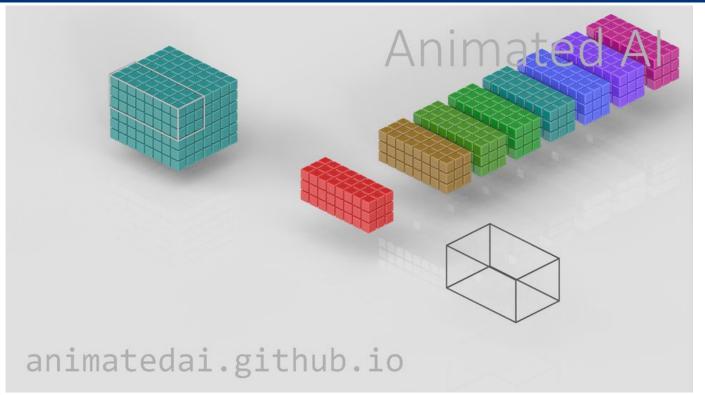


Output Volumes

- Typically, conv filters are full depth (N*N*input_depth)
- Each conv filter (often 3D) convolved generates a 2D plane of data
- Depth provides all the views on a part of the input
- Output volume: New representation of input with different dimensions



Output Volumes



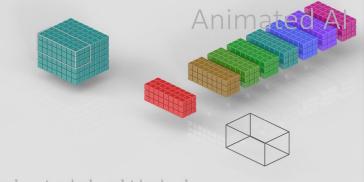
Padding policies

Size

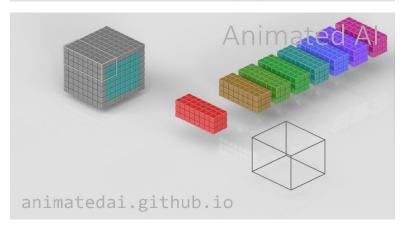
- Valid (no padding): Internal only.
 May skip data. Reduces dims.
- Same: Keep dimensionality with stride 1

Filling

Zeros, reflect, circular, ...



animatedai.github.io



PANs

Too much bias

-3

-3

-3 2

2

2

-2	1	1	
-2	1	1	
-2	1	1	

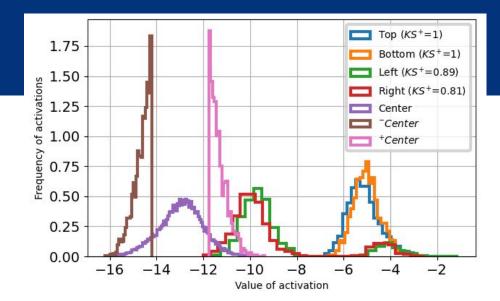
		0	0	0	0	С
		0				
	-1	0	Α			
	-1	0				
-1	0				E	
		0				
		0	0	0	0	C

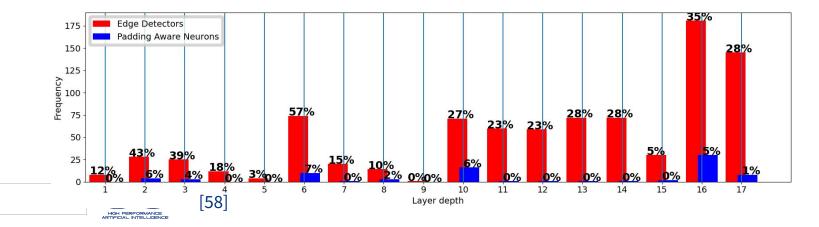
0 0

0

0

0



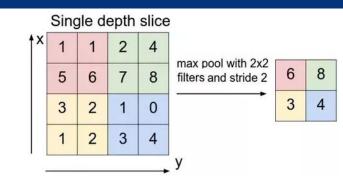


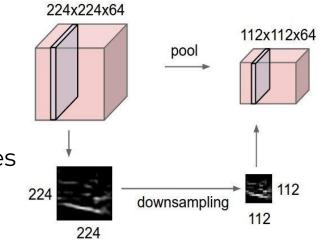
To Pool Or Not To Pool

- Operation: Max or Avg
- Dimensionality reduction (along x and y only)
- Rarely applied full depth
- Parameter free layer
- Hyperparams: Size & Stride
- Loss in spatial precision / Robust to invariance

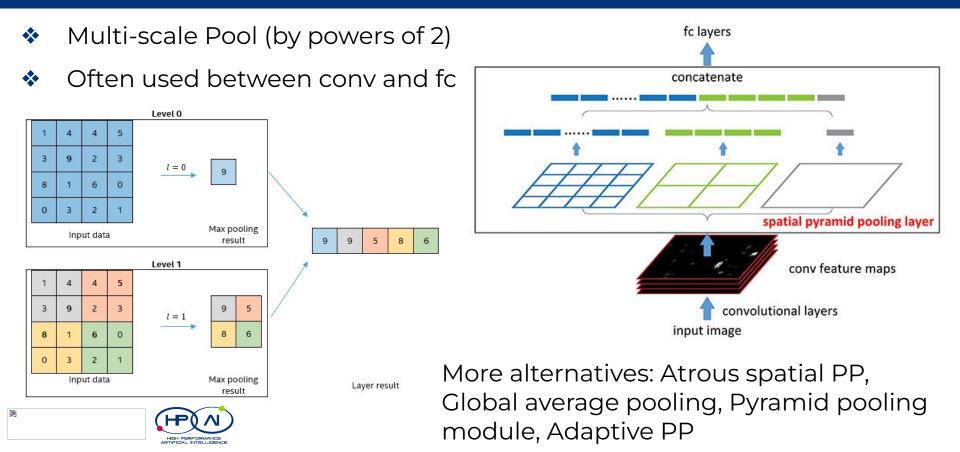
Other means to reduce complexity

Depth-wise separable convs, bigger conv. strides





Spatial Pyramid Pooling (SPP)



Practical Tips XI

Convolutional

- Small/big filters (3x3, 5x5, 7x7)
 - Cheap/Expensive
 - Local/General
 - Bigger/Smaller outputs (stride)
- Kernel Size = input size: fc
- Kernel size = 1x1: Alter depth)

Pooling

• 2x2, stride 1 is the least invasive

<u>Hyperparameters incomplete list</u> #4

- □ Kernel size (conv & pool)
- □ Stride (conv & pool)
- Padding (conv & pool)
- Num. filters
- Dilatation rate

CNNs

Emerging regularizers

Dario Garcia Gasulla *dario.garcia@bsc.es*

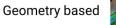
Data Augmentation for CNNs

Apply what is safe for each case

[50]

HIGH PERFORMANCE APTICIAL INTELLICENCE

- Problem specific *
- * Limited impact
- * Computation
- Train/Val/Test *



horizontal-flip

crop-and-pad

Elastic-Perspectivetransform transformation

Color based

Noise / occlusion

brighten

Gamma-

invert

crop

super-pixel

emboss

Weather

sharpen

gaussian-blur

Fast-snowy

clouds fog

Advanced image regularization/augmentation

Increase train variance forcing attention on full input (adds *noise*)

- MixUp (merge two samples), AdaMixup (manifold intrusion)
- CutOut (remove a patch)
- CutMix (merge samples w/ patch)
- Auto/DeepAugment (learn <op.,mag.> from the data. Danger!)

Beware. More data is always better than more augmentation.

Spatial Dropout

Standard Dropout is suboptimal for spatially related data

Consecutive inputs can be strongly redundant

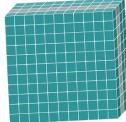
Spatial Dropout

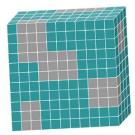
Drop entire feature maps, aka channels

[45,46,47]

Cutout

 Drop connected components along width, height and/or depth





Noisy Student (not only for CNNs)

A semi-supervised training paradigm

- 1. Train model A (teacher) with the labeled data
- 2. Use A to generate pseudo-labels for an unlabeled data set
- 3. Train model B (student) with both labeled and pseudo-labeled data
- 4. Model B is the new teacher. Go to step 2.

- Iterate, re-labeling the unlabeled data each time
- Highly regularized (noise!) student to guarantee improvement
- Each student has more capacity than the previous

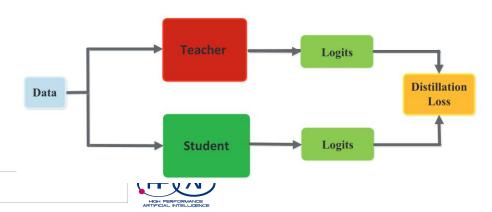
Knowledge Distillation

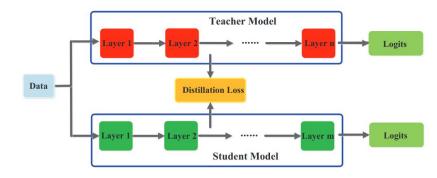
A compression paradigm

From a larger, teacher model, train a smaller student model

or

- Learning the teacher, not the task
- Compression of a compression
- Use outputs





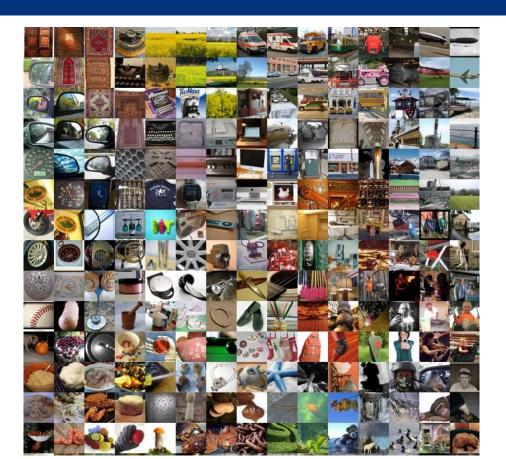
CNNs

Architectures

Dario Garcia Gasulla *dario.garcia@bsc.es*

Classification: 1K classes

Train: 1.2M, Val: 50K



ImageNet limitations

Noisy

- Multiclass
- Wrong (~6%)
- Overkilled
 - 90% pruning -> 3% perf. loss
- Overused

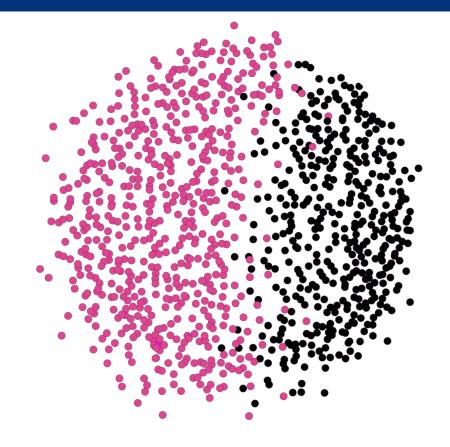
-10% performance on new test set

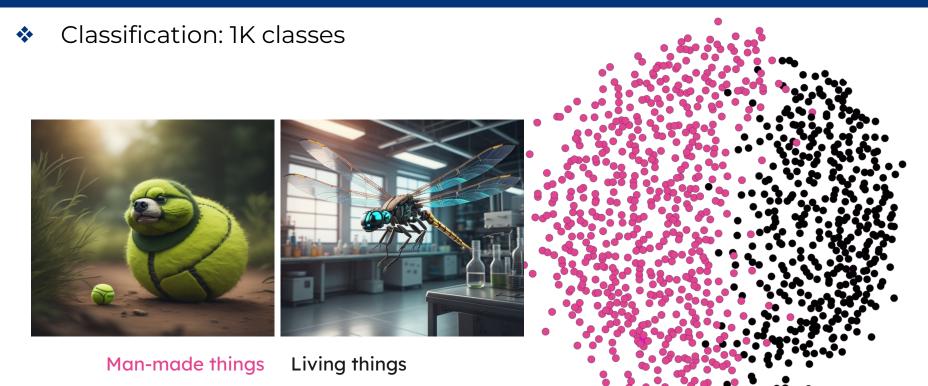
- Classification: 1K classes
 - Distances among internal representations

- Classification: 1K classes
 - Distances among internal representations

Man-made things Living

Living things

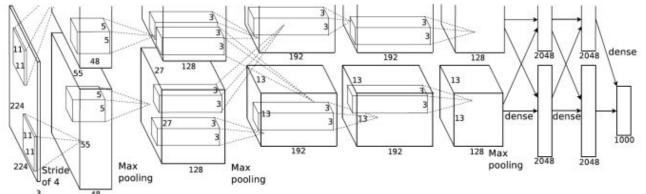


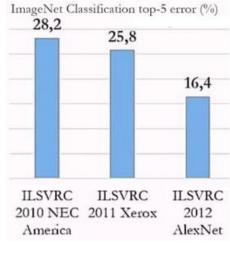


CNNs Big Bang

AlexNet (2012)

- Breakthrough in ILSVRC
- 5 convs+pools, ReLU, 2 dense, and dropout
- 62M parameters



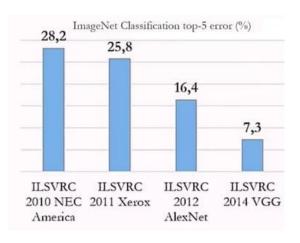


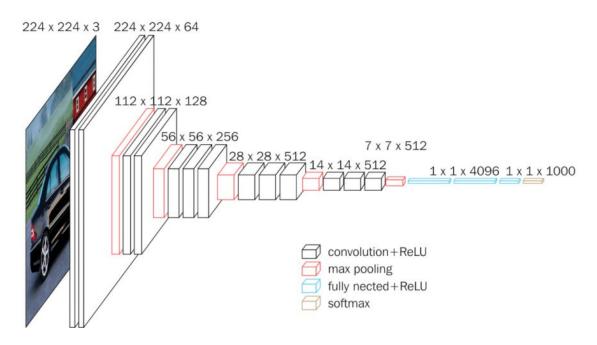
On the shoulders of giants

Optimizing cp*f

VGG 11/13/16/19 (2014)

- Prototype of (conv-pool)*+dense* architecture
- 133-144M parameters
- ✤ 3x3 convs only





The Inception Family

GoogLeNet (2014)

The Inception block * Filter concatenation Let the model decide the kernel size * 3×3 5×5 1×1 convolutions convolutions convolutions 1×1 Better scale adaptation * convolutions 3×3 1×1 1×1 convolutions convolutions max pooling Bottleneck 1x1 conv to make it feasible * Pervious layer No FC: Global Average Pooling (GAP) *

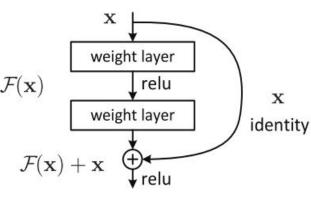
The Skipped Connection

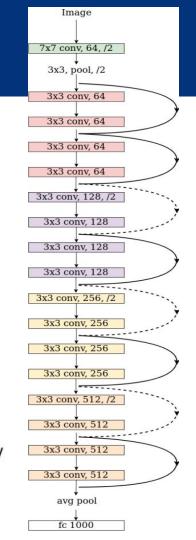
ResNet (2015)

- Residual blocks / Skip connections
- Deeper should never be worse
 - Learning the identity is hard
 - Learning to cancel out is easy

[13]

- Shallow ensemble of nets
- Train up to 1K layers (do not!)
- ILSVRC'12 human level





Transposed Convolution Deconvolution

Input

2 3

0

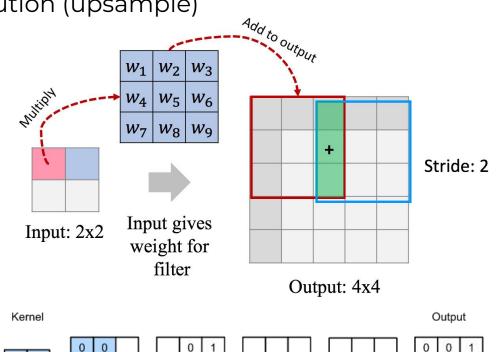
2

3

0 0

=

- Reverse effect of regular convolution (upsample)
- Learnt interpolation
- Applications
 - Segmentation
 - GANs
 - Super-Resolution
 - Conv. Autoencoders



0 2

6

+

0 3

+

0

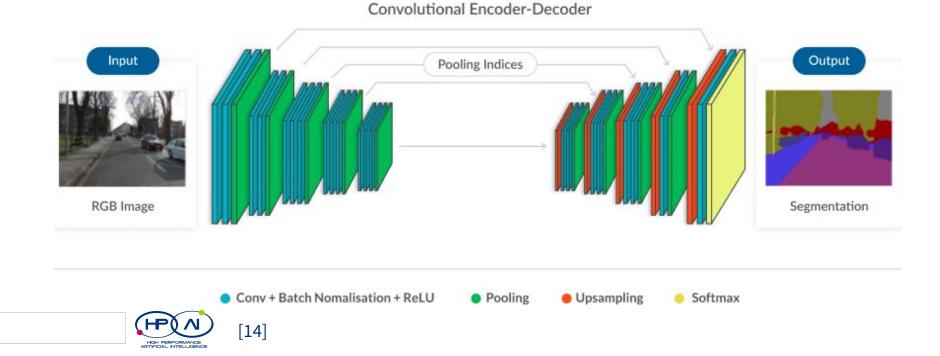
=

2 3

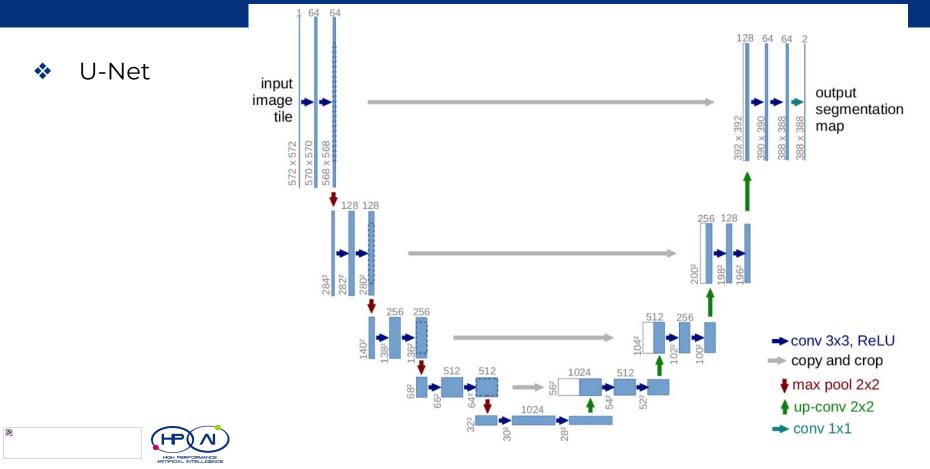
+

Encoder-Decoder aka Bottleneck

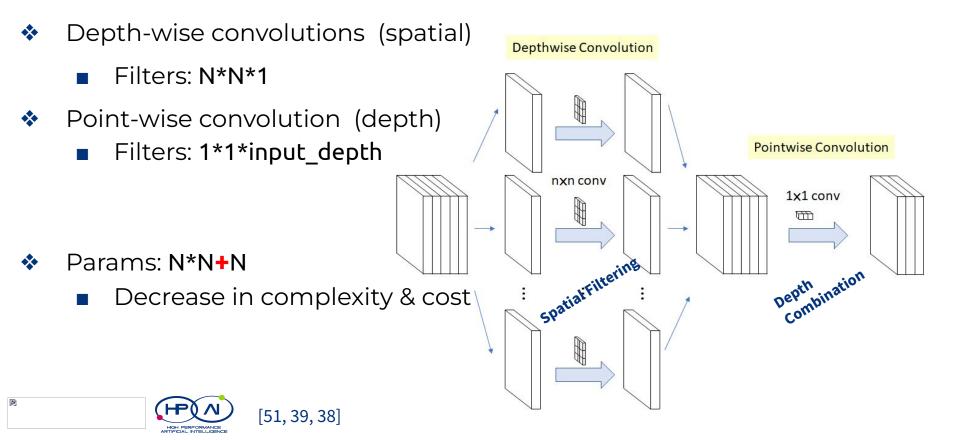
- Pixel-wise classification task (image reconstruction loss)
- Bottlenecking makes it cheaper



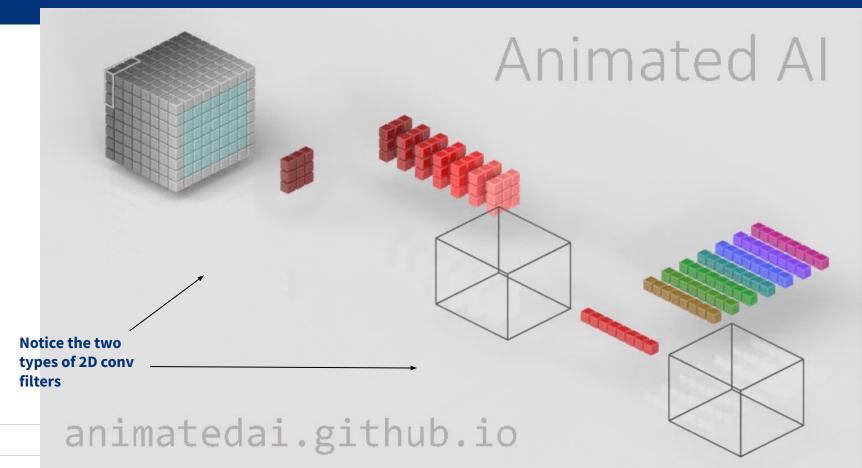
A standard



Depth-wise Separable Convolutions

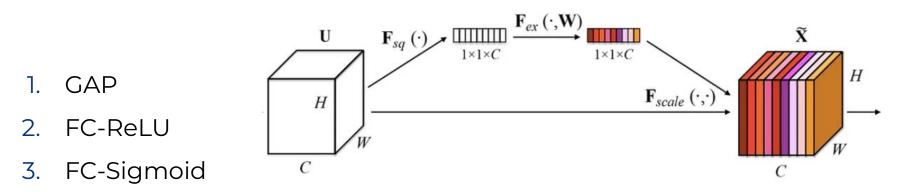


Depth-wise Separable Convolutions



Squeeze & Excite

- Increase/Decrease channel depth
- Non-spatial
- Parameter efficient

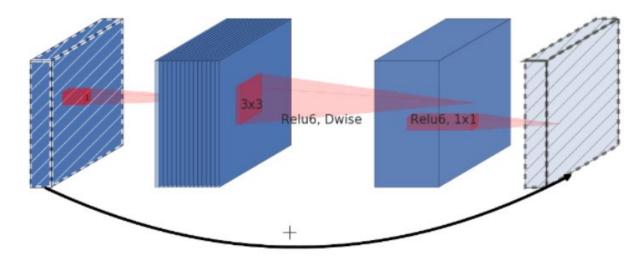


4. Channel-wise weight product

High PERFORMANCE ANTIFICAL NITELLICENCE [59]

Inverted Residuals

- 1. Point-wise conv
 - Expand depth
- 2. Depth-wise conv
 - Spatial compute
- 3. Point-wise conv
 - Reduce depth

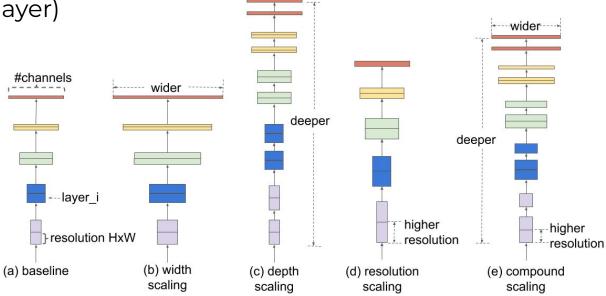


EfficientNet

Should I go deeper, wider or bigger?

- Find a balance between them (all related)
 - Width (neurons per layer)
 - Depth (layers)
 - Resolution (input)
 - B0 to B7

Inverted Res. Blocks



ConvNext, transforming CNNs

ViT learnt from CNN (Swin Transformer)

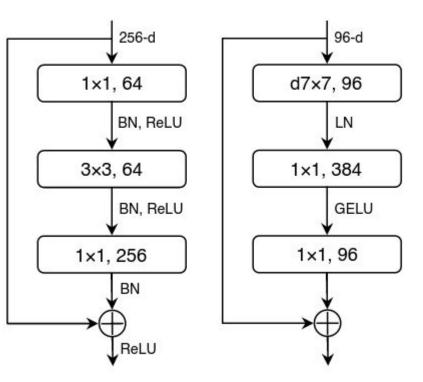
- AdamW (L2 regularization after step computation. Safe.)
- Regularize: Data augmentation (MixUp, Cutmix, ...), Label smoothing, ...
- Compute distribution (pool separated blocks): (3,4,6,3) -> (3,3,9,3)
- Patchify: First layer 4x4 stride 4 conv
- Depth-wise conv (spatial *or* channel mix). Inverted bottleneck.
- Larger kernels: 7x7
- GeLU, LN, BN

ConvNext, transforming CNNs

- 1. Patchify
- 2. Depth-wise conv
- 3. Inverted bottleneck
- 4. Larger kernels: 7x7
- 5. GeLU

- 6. Less activation functions
- 7. LN instead of BN
- 8. Less normalization layers

ResNet Block ConvNeXt Block



Practical Tips XII

CNN design policies

- Few filters at the beginning
- Hierarchy
- Max. complexity 2/3ds in

Things to monitor, layer wise

- Volume sizes
- Num. parameters

Visualizing CNNs

Biases everywhere

The Basics

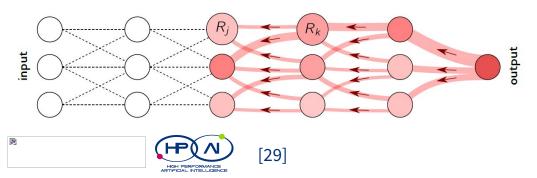
- NN are representation learning techniques
- CNNs build hierarchically complex features
 - From Gabor filters to dog faces
 - Induced by convolution
 - Tend to focus on the "non obvious for humans"
 - Backgrounds, textures
- The closer to the loss, more classifier (task) and less representation (data)

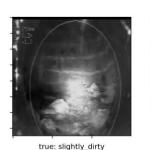
Ways of Looking at CNNs

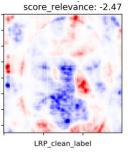
- Feature Attribution: Where is the network looking?
 - Grounded. Instance based.
 - Explainability in practice.
- Feature Visualization: What is the network seeing?
 - Uncontextualized. Maximization based.
 - Diagnosys & Insight
- Exemplification: How does the network react?
 - Max. activations
 - Samples from a distribution

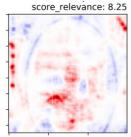
Attribution (Where)

- Finding the importance of pixels
- Layerwise Relevance Propagation (LRP)
 - Backpropagate an output. Find the relevance of each neuron
 - Weighted by CNN parameters

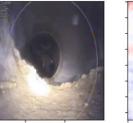




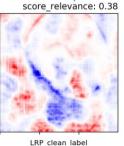


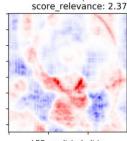


LRP_predicted: very_dirty score_relevance: 2.37



true: slightly_dirty



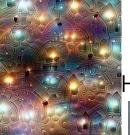


LRP_predicted: dirty

Feature Visualization (What)

- Optimizing the input to maximize the output
 - A neuron
 - A channel

Low level



High level

A layer (DeepDream)

Exemplification (How)

Finding images within a dataset maximizing outputs

Subjective

Partial

Stochastic

"All models are wrong, some are useful" - George Box

"All DL models are biased, some are usefully biased"

- Bias is what makes ML work. Is a form of generalization.
 - Identification: What bias?
 - Bonus track: Human bias (Pareidolia)
 - Appreciation: Desirable bias?
 - *Mitigation*: Altering dataset or model?

Bias Detection through XAI Attribution

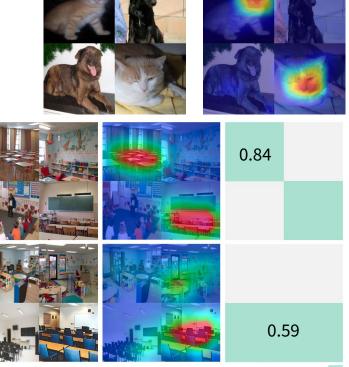
Focus & Mosaics: An eye-tracking game

Why is this mosaic of class "cat"?

- Identification: Many examples needed
- Evaluation: Expert decision
- Mitigation:

- Shared bias:
 - Add target samples without bias
 - Add non-target samples with bias
- Missing bias: Add target samples with bias

[48]



Target class: **Classroom** Outer class: Kindergarden

Playing with CNNs

Automatic Image Colorization

Another pixel-wise classification application

Faster Segmentation

- Object detection (bounding box)
 - Can be done with a "regular" CNN
- R-CNN: Propose crops (SVM). Extract features (CNN). Classify crops (SVM)
- Fast R-CNN: Extract features. Propose crops. Classify/Bounding Box (CNN)
- Faster R-CNN: Propose crops through a specific sub-net (RPN)
- YOLO v? (no regions, faster, less accurate)
 - Divide into grid. Predict class and bounding box for each cell.

Better Segmentation

- Mask R-CNN
 - Faster R-CNN for object detection
 - FCN for instance segmentation (pixel classification)
- Xception
 - Depth-wise separable Convs (inverted order & w/o non-linearity)
 - Skip connections
 - Atrous SPP

Style Transfer

- What do the correlation of activations intra-layer tell us?
 - What if we force it on another image?

[19,20,21,22]

- Gram matrix represents the *style*
 - Channel-wise (cXc)
 - Several mid layers
- Activations represents the content
 - One mid layer

- Optimize the **input** to minimize 2 losses
- Use a pre-trained net frozen
- Improved and extended

[1] http://vordenker.de/ggphilosophy/mcculloch_a-logical-calculus.pdf [2]<u>http://www-public.tem-tsp.eu/~gibson/Teaching/Teaching-ReadingMaterial/Ro</u> <u>senblatt58.pdf</u>

- [3] http://www.dtic.mil/dtic/tr/fulltext/u2/236965.pdf
- [4] https://en.wikipedia.org/wiki/Perceptrons_(book)
- [5]http://www.andreykurenkov.com/writing/a-brief-history-of-neural-nets-and-de ep-learning/
- [6] <u>https://en.wikipedia.org/wiki/Perceptrons_(book)</u>

[7] Werbos et al. "Beyond regression:" new tools for prediction and analysis in the behavioral sciences." Ph. D. dissertation, Harvard University (1974).

[8] Rummelhart et al. "Learning Internal Representations by Error Propagation". MIT Press (1986).

[9]https://towardsdatascience.com/effect-of-gradient-descent-optimizers-on-neural-n et-training-d44678d27060

- [10] https://arxiv.org/abs/1711.05101
- [11] https://bbabenko.github.io/weight-decay/
- [12] https://towardsdatascience.com/weight-decay-l2-regularization-90a9e17713cd

[13] Veit, Andreas, Michael J. Wilber, and Serge Belongie. "Residual networks behave like ensembles of relatively shallow networks." Advances in neural information processing systems. 2016.

[14] https://thegradient.pub/semantic-segmentation/

[15] <u>https://arxiv.org/pdf/1603.08511</u>

[16]

https://pdfs.semanticscholar.org/5c6a/0a8d993edf86846ac7c6be335fba244a59f8.pdf

[17] <u>https://arxiv.org/pdf/1606.00915.pdf</u> [18] <u>https://arxiv.org/pdf/1610.02357.pdf</u>

[19]

- https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Gatys_Image_St
- yle_Transfer_CVPR_2016_paper.pdf
- [20] https://arxiv.org/abs/1603.08155
- [21] https://arxiv.org/abs/1603.03417
- [22] https://ai.googleblog.com/2016/10/supercharging-style-transfer.html
- [23] https://arxiv.org/pdf/1903.07291.pdf
- [24] http://nvidia-research-mingyuliu.com/gaugan
- [25] Geirhos, Robert, et al. "ImageNet-trained CNNs are biased towards texture;
- increasing shape bias improves accuracy and robustness." arXiv preprint arXiv:1811.12231

(2018).

[26] Beery, Sara, Grant Van Horn, and Pietro Perona. "Recognition in terra incognita."
 Proceedings of the European Conference on Computer Vision (ECCV). 2018.
 [27] https://distill.pub/2017/feature-visualization/

[28] <u>https://distill.pub/2018/building-blocks/</u>

[29] Montavon, Grégoire, et al. "Layer-wise relevance propagation: an overview."

Explainable AI: interpreting, explaining and visualizing deep learning. Springer, Cham, 2019. 193-209.

[30]

https://medium.com/machine-intelligence-report/how-do-neural-networks-work-57d1 ab5337ce

[31] Hebb, D.O. (1949), The organization of behavior, New York: Wiley

- [32] Dauphin, Yann N., et al. "Identifying and attacking the saddle point problem in high-dimensional non-convex optimization." Advances in neural information processing systems. 2014.
- [33] Ruder, Sebastian. "An overview of gradient descent optimization algorithms." arXiv preprint arXiv:1609.04747 (2016).
- [34] Viazovetskyi, Yuri, Vladimir Ivashkin, and Evgeny Kashin. 'StyleGAN2 Distillation for
- Feed-Forward Image Manipulation'. 7 March 2020. <u>http://arxiv.org/abs/2003.03581</u>.
- [35] https://medium.com/@jonathan_hui/gan-stylegan-stylegan2-479bdf256299
- [36] <u>https://www.justinpinkney.com/making-toonify/</u>
- [37] <u>http://chengao.vision/FGVC/files/FGVC.pdf</u>
- [38] Sandler, Mark, et al. "Mobilenetv2: Inverted residuals and linear bottlenecks."
- Proceedings of the IEEE conference on computer vision and pattern recognition. 2018.

[39] Howard, Andrew G., et al. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint arXiv:1704.04861 (2017). [40] https://arxiv.org/abs/1710.09412v2 [41] https://arxiv.org/abs/1708.04552 [42] https://arxiv.org/pdf/1905.04899.pdf [43] https://arxiv.org/abs/1809.02499 [44] https://openaccess.thecvf.com/content_CVPR_2019/papers/Cubuk_AutoAugment_Lear ning_Augmentation_Strategies_From_Data_CVPR_2019_paper.pdf [45]

https://towardsdatascience.com/12-main-dropout-methods-mathematical-and-visual-explanation-58cdc2112293

[46] J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler, Efficient object localization using convolutional networks

[47] T. DeVries and G. W. Taylor, Improved regularization of convolutional neural networks with cutout

[48] Arias-Duart, Anna, Ferran Parés, and Dario Garcia-Gasulla. "Focus! Rating XAI Methods and Finding Biases with Mosaics" arXiv preprint arXiv:2109.15035 (2021). [49] Recht, Benjamin, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. "Do imagenet classifiers generalize to imagenet?." In International Conference on Machine Learning, pp. 5389-5400. PMLR, 2019.

[50] <u>https://blog.insightdatascience.com/automl-for-data-augmentation-e87cf692c366</u>
 [51] Chollet, François. "Xception: Deep learning with depthwise separable convolutions."
 Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.

[52] Liu, Ze, et al. "Swin transformer: Hierarchical vision transformer using shifted windows." Proceedings of IEEE/CVF international conference on computer vision. 2021. [53] Liu, Zhuang, et al. "A convnet for the 2020s." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2022. [54] https://towardsdatascience.com/why-adamw-matters-736223f31b5d [55] Garcia-Gasulla, Dario, et al. "A visual embedding for the unsupervised extraction of abstract semantics." Cognitive Systems Research 42 (2017): 73-81. [56] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. CoRR, abs/1902.09574, 2019. URL http://arxiv.org/abs/1902.09574 [57] Northcutt, Curtis G., Anish Athalye, and Jonas Mueller. "Pervasive label errors in test sets destabilize machine learning benchmarks." arXiv preprint arXiv:2103.14749 (2021).

[58] Garcia-Gasulla, D., Gimenez Abalos, V., and Agustin Martin-Torres, P. "Padding Aware Neurons." In 4th Visual Inductive Priors for Data-Efficient Deep Learning Workshop. 2023.

[59] https://arxiv.org/abs/1709.01507

Dario Garcia-Gasulla (BSC) dario.garcia@bsc.es

ARTIFICIAL INTELLIGENCE