
Dario Garcia Gasulla
dario.garcia@bsc.es

Deep Learning - MAI
before starting… a Horror Movie

Everything is fine

❖ Loss/Acc plot

❖ Cats vs Dogs classif.

❖ 1K train samples/class

❖ Epoch ⪝ 16 = UF
❖ Epoch 16 ⋍ Fit
❖ Epoch ⪞ 16 OF

But wait

❖ Cats with 48 indoor contexts:
■ vase, laptop, rug, bowl, computer mouse, sink, shelf, blanket, carpet, desk,

picture, bottle, bookshelf, lamp, suitcase, pillow, food, toy…

❖ Dogs with 27 outdoor contexts:

■ house, surfboard, car, fence, cow, trash can, trees, fire hydrant, bench, snow,
flag, skateboard, helmet, water, sand, horse, frisbee…

❖ What happens if we test with OOD?
■ Cats (+7 outdoor objects)
■ Dogs (+27 indoor objects)

What is going on?

❖ Worst dogs & Worst cats

OMG

❖ Worst than random

❖ Cat? What’s a cat?

❖ Beware of the bias!

❖ Trust no model

The target (dog)

The target (cat)

The End

[55,56]

The End

[55,56]

99.98% Dog 96.30% Cat 99.40% Dog

Dario Garcia Gasulla
dario.garcia@bsc.es

Deep Learning - MAI
Theory - RNNs

Context

Vanilla RNNs

Advanced RNNs

RNNs extensions

Dario Garcia Gasulla
dario.garcia@bsc.es

Context

The Sequence

❖ Fully-connected and CNNs* have fixed inputs and outputs

❖ What if we have a variable shape input? Or output? And streams?

❖ Given a sequence (Text, video, audio, signal, bioinformatics…)

■ Learn the relations between the symbols that compose it,

respecting its directionality

* CNNs tolerate a certain amount of inputs/outputs size variance thanks to
convolution

What do we want

❖ Sequences can be processed using traditional methods (e.g., sliding

windows), but sequences need to have the same length

❖ We want to…

■ process sequences of arbitrary length

■ represent & exploit temporal dimension

■ have flexibility in input/output type

How do we want it

Fixed Input
Sequence Output

Image Caption

[40]

Sequence Input
Fixed Output

Image Retrieval
Sentiment Analysis

Fixed Input
Fixed Output

Image Class.

Sequence Input
Sequence Output

Translation

Sequence Input
Sequence Output

Frame classification
Real time translation
(synced)

One to many

❖ Image captioning (image to text)

[41]

Many to one

❖ Sentiment analysis (text to category)

■ My flight was just delayed, s**t ⇒ Negative

■ We arrived on time, yeehaaa! ⇒ Positive

■ Another day, another flight ⇒ Neutral

❖ Image retrieval (text to image)

■ Search engines

❖ Video labeling (images to category), images to image, …

Sequence to Sequence

❖ Automatic translation

■ [How, many, programmers, for, changing, a,lightbulb,?] ⇒

■ [Wie, viele, Programmierer, zum, Wechseln, einer,Gl ̈uhbirne,?] ⇒

■ [Combien, de, programmeurs, pour, changer, une,ampoule,?] ⇒

■ [¿,Cuantos, programadores, para, cambiar,una,bombilla,?] ⇒

■ [Zenbat, bonbilla, bat, aldatzeko,programatzaileak,?]

Synced Sequence

❖ Frame classification

❖ Real-time translation

❖ No full input info

makes it harder

Dario Garcia Gasulla
dario.garcia@bsc.es

Vanilla RNNs

What makes a RNN?

What ❖ Recurrent Neural Networks are feed-forward networks with

edges that span adjacent time steps (recurrent edges)

❖ On each step, a neuron receives inputs from data (x, as usual)

and from previous time steps (h, history)

❖ In other words, a given time step influences the next one (and

by transitivity, all following ones)

❖ RNNs are universal function approximators (Turing Complete)

Who is who

❖ RNNs Input (x) is a vector of values for time t

❖ The hidden node (h) stores the state

❖ Weights are shared through time (one weights, all time!)

❖ Each step the computation uses the previous step

■ h(t+1)=f(h(t),xt+1;θ) = f(f(h(t−1),xt;θ),xt+1;θ) =···

❖ RNN are a deep network that stacks layers through time
(instead of stacking consecutive layers)

Inference: Before unrolling

Inference: After unrolling

The computation

The past The present

The power of RNNs lies in the unrolling, not in depth

● RNNs with many layers are very expensive to compute

● What we care about is memory

● Activation functions

■ Tanh is better than sigmoid. ReLU also popular

● When working with text, inputs are most frequently tokens or word
embeddings

Practical Tips I

How to train RNNs

❖ Backpropagation Through Time (BPTT)

■ Unroll RNN

■ Feed full sequence. Forward, loss

■ Backprop + SGD with sums

❖ Input is truncated in mini-batches to reduce cost

Training issues

❖ Sharing weights, with longer sequences, easily yields

■ Vanishing gradient (favours close by patterns vs distant ones)

■ Exploding gradients and NaN losses (choose your poison)

○ Highly unstable loss, eventually NaN. Large weights, eventually NaN.

❖ Clipping gradients to prevent exploding gradients

■ Scales gradient if the norm is above an (arbitrary) threshold

❖ For vanishing gradients, ReLUs

Key features of RNNs

❖ Can process inputs of any length (weight reuse)

■ For fixed sized inputs, other options are better (CNN, Transformers)

❖ Implements memory by design (recurrent edge, hidden state)

❖ Model complexity is independent of input length (weight reuse)

❖ Temporal invariance (weight reuse)

■ Weight reuse is cool, but it must account for all data relations

[51,52]

Word embedding task

❖ Words are defined by

their context

❖ Unlabeled text: Endless

source of training data

❖ Use a sliding window of

fixed length

Word embedding models
Predict word given context Predict context given word

❖ Faster and slightly better for
frequent words

❖ Good for little training data and
rare word representation

Forget about the output!
Give me the intermediate representations

Word embedding properties

❖ Compute word similarity (cosine distance among embedding vectors)

❖ Find “regularities“

■ Add & Substract

❖ So much bias…

❖ Go play

■ https://projector.tensorflow.org/ https://ronxin.github.io/wevi/

https://projector.tensorflow.org/
https://ronxin.github.io/wevi/

Dario Garcia Gasulla
dario.garcia@bsc.es

Advanced RNNs

❖ RNNs keep multiplying the same weight matrix over and over, which

makes it error prone

❖ The state encodes both short and long term relations, which gets

complicated as input sequences grow (how much can you store in a

single set of weights???)

❖ What if we make the state more powerful? Let’s complicate the

model, yay!

The limitations

LSTM

❖ Long-Short Term Memory

■ In addition to the hidden state, add a cell state.

■ Hidden state characterizes previous data step (short-term, large updates)

■ Cell state characterizes historical data (long-term, small updates)

■ Include gate operators to erase, write and read from the cell (long)

○ Different sets of weights

❖ Gates regulate the cell state, decide the operation (e/r/w), it’s target (cell state

segment) and magnitude (gate in range [0,1]), based on context

[42,54]

Inside a LSTM

❖ Cell state (long-term, small updates)

■ Information flow

❖ Hidden state characterizes previous data

step (short-term, large updates)

ct-1

ht-1

ct

ht

Inside a LSTM

[43,53]

❖ Forget gate:

❖ Given current data and short memory, what
do we keep from the long

■ ft = 𝛔(Wf·[ht-1,xt])

○ ft ≃0 -> forget

○ ft ≃1 -> retain

■ ct = ft * ct-1

○ New cell state, sparsified

ct-1

ht-1

ct

ht

f

All gates combine current data (xt) and past state (ht-1)
tanh: Encode & Normalize [-1,1] sig: Weight & Scale [0,1]

Wf

Inside a LSTM

[43,53]

❖ Input gate:

❖ Given current data and short memory, how
much do we add to long

■ it = 𝛔(Wi·[ht-1,xt])

❖ And what do we add to long

■ ĉt = tanh(Wc·[ht-1,xt])

❖ New cell state, complemented

■ ct = (it * ĉt) + (ft * ct-1)

ct-1

ht-1

ct

ht

All gates combine current data (xt) and past state (ht-1)
tanh: Encode & Normalize [-1,1] sig: Weight & Scale [0,1]

i

Wi Wĉ

ĉ

Inside a LSTM

[43,53,59]

❖ Output gate:

❖ What parts of long are output

■ ot = 𝛔(Wo·[ht-1,xt])

❖ Filter them

■ ht = ot × tanh(ct) (new hidden state)

❖ 4 weight matrices of same size
■ num. hidden units * (num. hidden units + input emb. size) + num. hidden units

ct-1

ht-1

ct

ht

o

All gates combine current data (xt) and past state (ht-1)
tanh: Encode & Normalize [-1,1] sig: Weight & Scale [0,1]

Wo

biasinput weights

Why do LSTM work

[43]

❖ If forget gate is set to 0 (remember everything), long-term relations are
always kept

❖ It includes a sort of short-cut, as long as you do not forget everything,
gradient will flow!*

* No more W exp, but
sigmoid can still
vanish the gradient

Gated Recurrent Units

❖ A simplified version of LSTMs (thanks?)

■ No cell state

■ Update gate: What in the hidden state is updated/left as it is

○ LSTMs forget gate + input gate

■ Reset gate: Which part of the previous hidden state is used

○ Close to 1: Previous state has more relevance

○ Close to 0: New state has more relevance

[44]

Inside a GRU
❖ Update gate: How to change hidden state

■ zt = 𝛔(Wz·[ht-1 , xt])

❖ Reset gate: How to combine

■ rt = 𝛔(Wr·[ht-1 , xt])

❖ New hidden state content

■ ĥt = tanh(Wh·[rt×ht-1 , xt])

❖ Hidden state output

■ ht =(1-zt)×ht-1 + zt×ĥt

[44]

Vanilla RNN vs LSTM vs GRU

❖ Of all RNN variants, LSTMs and GRUs are the most widely used

■ Vanilla falls short in complex tasks, lacking long memory capacity

❖ Main difference between LSTM and GRUs: Complexity

■ Training GRUs is faster and includes less parameters

■ Performance-wise, there are no consistent results

❖ RNN variants are the state-of-the-art architectures for handling memory

■ Spoiler: This is why Transformers CANNOT fully replace RNNs

[45,46]

Dario Garcia Gasulla
dario.garcia@bsc.es

RNNs Extensions

Bidirectional RNNs

❖ Hidden states encode past states to influence current state

❖ What about future states? What if read from end to start?

■ PoS tagging, machine translation, speech/handwritting recognition

Bidirectional RNNs

Read❖ “Reading” in both directions at the same time

❖ Two RNNs, one in each direction, with different weights,

concatenating their outputs

Training Bidirectional RNNs

❖ Both RNNs trained concurrently, but dependencies must be respected

■ Forward: Compute output of both RNNs and combine step by step

■ Backward: Compute gradient of both RNNs and combine step by

step

❖ If possible (complete input sequence available), and in general (if the

problem does not contradict) bidirectionality is a plus

Multi-layer RNNs

❖ So far, only one layer used

■ Depth is provided by unrolling

❖ Multi-layer RNNs

■ Stacking layers (rarely more than 4)

■ Provide extra abstraction capacity

■ A computational nightmare

[47]

Encoder-Decoder RNNs (seq2seq)

❖ Sequence to sequence of variable length (Neural Machine Translation)

❖ One RNN encodes words within their context

❖ Generates a sentence embedding

❖ One RNN decodes embeddings into words

❖ Start and End tokens

[48]

Encoder-Decoder practical details

❖ Applications

■ Automatic language translation

■ Dialogue generation

■ Document summarization

■ Automatic response generation

■ Input parsing

[48]

❖ Training

■ Each decoding step
generates one loss

■ Negative log-likelihood of the
true outcome at that point

■ Average all losses at each step

■ Decoder state input is true
outcome of the previous one
(not the actual prediction)

From Encoder-Decoder to Attention

❖ seq2seq limitations

■ Full sentence into a fixed-sized, unique embedding (bottleneck)

■ Different parts of the decoder focus on different parts of the input

■ In inference

○ Greedy decoding: Carrying on errors

○ Beam search decoding: Keep top k branches, find most probable path

❖ Solution: Let each decoder step decide the part of the whole input to use

[49]

Seq2seq with attention
❖ Each decoder state

■ Compute a score per enc. hidden state

■ Turn into probabilities (softmax)

■ Dot prod. w/ hidden enc. states

■ Sum to make the fix-len

■ Concatenate with hidden decoder state

■ Output and fed to next step

[49,57,58]

Why seq2seq with attention

❖ Enables one different context for each

decoding step

■ No fix-sized bottleneck

❖ Provides shortcuts (better gradient flows)

❖ More fine-grained -> better interpretability

[49]

A typical RNN model today...

“An encoder-decoder
bidirectional,
multilayered
LSTM-based
RNN with an

attention mechanism”

References

[40] Andrej Karpathy, The Unreasonable Effectiveness of Recurrent Neural Networks,
May 21, 2015. http://karpathy.github.io/2015/05/21/rnn-effectiveness/
[41] https://cs.stanford.edu/people/karpathy/deepimagesent/
[42] Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural
computation 9, no. 8 (1997): 1735-1780.
[43] http://colah.github.io/posts/2015-08-Understanding-LSTMs/
[44] Chung, Junyoung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio.
"Empirical evaluation of gated recurrent neural networks on sequence modeling." arXiv
preprint arXiv:1412.3555 (2014).
[45] Jozefowicz, R., Zaremba, W., Sutskever, I. (2015). An empirical exploration of
recurrent network architectures. In Proceedings of the 32nd International Conference
on Machine Learning(ICML-15) (pp. 2342-2350).

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://colah.github.io/posts/2015-08-Understanding-LSTMs/

References

[46] Chung, J., Gulcehre, C., Cho, K., Bengio, Y. (2014).Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555.
[47]
https://calvinfeng.gitbook.io/machine-learning-notebook/supervised-learning/recurre
nt-neural-network/recurrent_neural_networks/
[48] Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning with
neural networks." arXiv preprint arXiv:1409.3215 (2014).
[49] Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine
translation by jointly learning to align and translate." arXiv preprint arXiv:1409.0473
(2014).
[50] Britz, Denny, Anna Goldie, Minh-Thang Luong, and Quoc Le. "Massive exploration
of neural machine translation architectures." arXiv preprint arXiv:1703.03906 (2017).

https://calvinfeng.gitbook.io/machine-learning-notebook/supervised-learning/recurrent-neural-network/recurrent_neural_networks/
https://calvinfeng.gitbook.io/machine-learning-notebook/supervised-learning/recurrent-neural-network/recurrent_neural_networks/

References

[51] Mikolov, Tomas, et al. Distributed Representations of Words and
Phrases and their Compositionality.
[52] Jeffrey Pennington, Richard Socher, and Christopher D. Manning.
2014. GloVe: Global Vectors for Word Representation.
[53]
https://medium.com/analytics-vidhya/lstms-explained-a-complete-technically-accurat
e-conceptual-guide-with-keras-2a650327e8f2
[54] https://www.geeksforgeeks.org/understanding-of-lstm-networks/
[55] Arias-Duart, A., Parés, F., Garcia-Gasulla, D., & Giménez-Ábalos, V. (2022, July). Focus!
Rating XAI Methods and Finding Biases. In 2022 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE) (pp. 1-8). IEEE.
[56] Arias-Duart, A., et. al. (2022, October). Focus and Bias: Will it Blend?. In 2022 Catalan
Conference on Artificial Intelligence (CCIA).

https://medium.com/analytics-vidhya/lstms-explained-a-complete-technically-accurate-conceptual-guide-with-keras-2a650327e8f2
https://medium.com/analytics-vidhya/lstms-explained-a-complete-technically-accurate-conceptual-guide-with-keras-2a650327e8f2
https://www.geeksforgeeks.org/understanding-of-lstm-networks/

References

[57] https://guillaumegenthial.github.io/sequence-to-sequence.html
[58] https://distill.pub/2016/augmented-rnns/
[59]
https://medium.com/analytics-vidhya/demystifying-lstm-weights-and-biases-dimensi
ons-c47dbd39b30a

https://guillaumegenthial.github.io/sequence-to-sequence.html
https://distill.pub/2016/augmented-rnns/

Dario Garcia-Gasulla (BSC)
dario.garcia@bsc.es

