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Deep Learning - MAI
before starting… a Horror Movie



Everything is fine

❖ Loss/Acc plot

❖ Cats vs Dogs classif.

❖ 1K train samples/class

❖ Epoch ⪝ 16 = UF
❖ Epoch 16 ⋍ Fit
❖ Epoch ⪞ 16 OF



But wait

❖ Cats with 48 indoor contexts: 
■ vase, laptop, rug, bowl, computer mouse, sink, shelf, blanket, carpet, desk, 

picture, bottle, bookshelf, lamp, suitcase, pillow, food, toy…

❖ Dogs with 27 outdoor contexts:

■ house, surfboard, car, fence, cow, trash can, trees, fire hydrant, bench, snow, 
flag, skateboard, helmet, water, sand, horse, frisbee…

❖ What happens if we test with OOD?
■ Cats (+7 outdoor objects)
■ Dogs (+27 indoor objects)



What is going on?

❖ Worst dogs & Worst cats



OMG

❖ Worst than random

❖ Cat? What’s a cat?

❖ Beware of the bias!

❖ Trust no model



The target (dog)



The target (cat)



The End

[55,56]



The End

[55,56]

99.98% Dog 96.30% Cat 99.40% Dog
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The Sequence

❖ Fully-connected and CNNs* have fixed inputs and outputs

❖ What if we have a variable shape input? Or output? And streams?

❖ Given a sequence (Text, video, audio, signal, bioinformatics…)

■ Learn the relations between the symbols that compose it, 

respecting its directionality

* CNNs tolerate a certain amount of inputs/outputs size variance thanks to 
convolution 



What do we want

❖ Sequences can be processed using traditional methods (e.g., sliding 

windows), but sequences need to have the same length

❖ We want to…

■ process sequences of arbitrary length

■ represent & exploit temporal dimension

■ have flexibility in input/output type



How do we want it

Fixed Input
Sequence Output

Image Caption

[40]

Sequence Input
Fixed Output

Image Retrieval
Sentiment Analysis

Fixed Input
Fixed Output

Image Class.

Sequence Input
Sequence Output

Translation

Sequence Input
Sequence Output
           
Frame classification
Real time translation
(synced)



One to many

❖ Image captioning (image to text)

[41]



Many to one

❖ Sentiment analysis (text to category)

■ My flight was just delayed, s**t ⇒ Negative

■ We arrived on time, yeehaaa! ⇒ Positive

■ Another day, another flight ⇒ Neutral

❖ Image retrieval (text to image)

■ Search engines

❖ Video labeling (images to category), images to image, …



Sequence to Sequence

❖ Automatic translation

■ [How, many, programmers, for, changing, a,lightbulb,?] ⇒ 

■ [Wie, viele, Programmierer, zum, Wechseln, einer,Gl ̈uhbirne,?] ⇒ 

■ [Combien, de, programmeurs, pour, changer, une,ampoule,?] ⇒

■ [¿,Cuantos, programadores, para, cambiar,una,bombilla,?] ⇒ 

■ [Zenbat, bonbilla, bat, aldatzeko,programatzaileak,?]



Synced Sequence

❖ Frame classification

❖ Real-time translation

❖ No full input info 

makes it harder
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What makes a RNN?

What ❖ Recurrent Neural Networks are feed-forward networks with 

edges that span adjacent time steps (recurrent edges)

❖ On each step, a neuron receives inputs from data (x, as usual) 

and from previous time steps (h, history)

❖ In other words, a given time step influences the next one (and 

by transitivity, all following ones)

❖ RNNs are universal function approximators (Turing Complete)



Who is who

❖ RNNs Input (x) is a vector of values for time t 

❖ The hidden node (h) stores the state

❖ Weights are shared through time (one weights, all time!)

❖ Each step the computation uses the previous step

■ h(t+1)=f(h(t),xt+1;θ) = f(f(h(t−1),xt;θ),xt+1;θ) =···

❖ RNN are a deep network that stacks layers through time 
(instead of stacking consecutive layers)



Inference: Before unrolling



Inference: After unrolling



The computation

The past The present



The power of RNNs lies in the unrolling, not in depth

● RNNs with many layers are very expensive to compute

● What we care about is memory

● Activation functions

■ Tanh is better than sigmoid. ReLU also popular

● When working with text, inputs are most frequently tokens or  word 
embeddings

Practical Tips I



How to train RNNs

❖  Backpropagation Through Time (BPTT)

■ Unroll RNN

■ Feed full sequence. Forward, loss

■ Backprop + SGD with sums

❖ Input is truncated in mini-batches to reduce cost



Training issues

❖ Sharing weights, with longer sequences, easily yields

■ Vanishing gradient (favours close by patterns vs distant ones)

■ Exploding gradients and NaN losses (choose your poison)

○ Highly unstable loss, eventually NaN. Large weights, eventually NaN.

❖ Clipping gradients to prevent exploding gradients

■ Scales gradient if the norm is above an (arbitrary) threshold

❖ For vanishing gradients, ReLUs



Key features of RNNs

❖ Can process inputs of any length (weight reuse)

■ For fixed sized inputs, other options are better (CNN, Transformers)

❖ Implements memory by design (recurrent edge, hidden state)

❖ Model complexity is independent of input length (weight reuse)

❖ Temporal invariance (weight reuse)

■ Weight reuse is cool, but it must account for all data relations

[51,52]



Word embedding task

❖ Words are defined by 

their context

❖ Unlabeled text: Endless 

source of training data

❖ Use a sliding window of 

fixed length



Word embedding models
Predict word given context Predict context given word

❖ Faster and slightly better for 
frequent words

❖ Good for little training data and 
rare word representation

Forget about the output!
Give me the intermediate representations



Word embedding properties

❖ Compute word similarity (cosine distance among embedding vectors)

❖ Find “regularities“

■ Add & Substract

❖ So much bias…

❖ Go play

■ https://projector.tensorflow.org/ https://ronxin.github.io/wevi/

https://projector.tensorflow.org/
https://ronxin.github.io/wevi/
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❖ RNNs keep multiplying the same weight matrix over and over, which 

makes it error prone

❖ The state encodes both short and long term relations, which gets 

complicated as input sequences grow (how much can you store in a 

single set of weights???)

❖ What if we make the state more powerful? Let’s complicate the 

model, yay!

The limitations



LSTM

❖ Long-Short Term Memory

■ In addition to the hidden state, add a cell state.

■ Hidden state characterizes previous data step (short-term, large updates)

■ Cell state characterizes historical data (long-term, small updates)

■ Include gate operators to erase, write and read from the cell (long)

○ Different sets of weights

❖ Gates regulate the cell state, decide the operation (e/r/w), it’s target (cell state 

segment) and magnitude (gate in range [0,1]), based on context

[42,54]



Inside a LSTM

❖ Cell state (long-term, small updates)

■ Information flow

❖ Hidden state characterizes previous data 

step (short-term, large updates)

ct-1

ht-1

ct

ht



Inside a LSTM

[43,53]

❖ Forget gate: 

❖ Given current data and short memory, what 
do we keep from the long

■ ft = 𝛔(Wf·[ht-1,xt])

○ ft ≃0 -> forget

○ ft ≃1 -> retain

■ ct = ft * ct-1

○ New cell state, sparsified

ct-1

ht-1

ct

ht

f

All gates combine current data (xt) and past state (ht-1)
tanh: Encode & Normalize [-1,1]   sig: Weight & Scale [0,1]

Wf 



Inside a LSTM

[43,53]

❖ Input gate: 

❖ Given current data and short memory, how 
much do we add to long

■ it = 𝛔(Wi·[ht-1,xt])

❖ And what do we add to long

■ ĉt = tanh(Wc·[ht-1,xt]) 

❖ New cell state, complemented

■ ct = (it * ĉt) + (ft * ct-1)

ct-1

ht-1

ct

ht

All gates combine current data (xt) and past state (ht-1)
tanh: Encode & Normalize [-1,1]   sig: Weight & Scale [0,1]

i

Wi         Wĉ  

ĉ 



Inside a LSTM

[43,53,59]

❖ Output gate: 

❖ What parts of long are output

■ ot = 𝛔(Wo·[ht-1,xt])

❖ Filter them

■ ht = ot × tanh(ct) (new hidden state)

❖ 4 weight matrices of same size
■ num. hidden units * (num. hidden units + input emb. size) + num. hidden units

ct-1

ht-1

ct

ht

o

All gates combine current data (xt) and past state (ht-1)
tanh: Encode & Normalize [-1,1]   sig: Weight & Scale [0,1]

Wo  

biasinput weights



Why do LSTM work

[43]

❖ If forget gate is set to 0 (remember everything), long-term relations are 
always kept

❖ It includes a sort of short-cut, as long as you do not forget everything, 
gradient will flow!*

* No more W exp, but
sigmoid can still
vanish the gradient



Gated Recurrent Units

❖ A simplified version of LSTMs (thanks?)

■ No cell state

■ Update gate: What in the hidden state is updated/left as it is

○ LSTMs forget gate + input gate

■ Reset gate: Which part of the previous hidden state is used

○ Close to 1: Previous state has more relevance

○ Close to 0: New state has more relevance

[44]



Inside a GRU
❖ Update gate: How to change hidden state

■ zt = 𝛔(Wz·[ht-1 , xt])

❖ Reset gate: How to combine 

■ rt = 𝛔(Wr·[ht-1 , xt])

❖ New hidden state content

■ ĥt = tanh(Wh·[rt×ht-1 , xt])

❖ Hidden state output

■ ht =(1-zt)×ht-1 + zt×ĥt

[44]



Vanilla RNN vs LSTM vs GRU

❖ Of all RNN variants, LSTMs and GRUs are the most widely used

■ Vanilla falls short in complex tasks, lacking long memory capacity

❖ Main difference between LSTM and GRUs: Complexity

■ Training GRUs is faster and includes less parameters

■ Performance-wise, there are no consistent results

❖ RNN variants are the state-of-the-art architectures for handling memory

■ Spoiler:  This is why Transformers CANNOT fully replace RNNs

[45,46]
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Bidirectional RNNs

❖ Hidden states encode past states to influence current state

❖ What about future states? What if read from end to start?

■ PoS tagging, machine translation, speech/handwritting recognition



Bidirectional RNNs

Read❖ “Reading” in both directions at the same time

❖ Two RNNs, one in each direction, with different weights, 

concatenating their outputs



Training Bidirectional RNNs

❖ Both RNNs trained concurrently, but dependencies must be respected

■ Forward: Compute output of both RNNs and combine step by step

■ Backward: Compute gradient of both RNNs and combine step by 

step

❖ If possible (complete input sequence available), and in general (if the 

problem does not contradict) bidirectionality is a plus



Multi-layer RNNs

❖ So far, only one layer used

■ Depth is provided by unrolling

❖ Multi-layer RNNs

■ Stacking layers (rarely more than 4)

■ Provide extra abstraction capacity 

■ A computational nightmare

[47]



Encoder-Decoder RNNs (seq2seq)

❖ Sequence to sequence of variable length (Neural Machine Translation)

❖ One RNN encodes words within their context

❖ Generates a sentence embedding

❖ One RNN decodes embeddings into words

❖ Start and End tokens

[48]



Encoder-Decoder practical details

❖ Applications

■ Automatic language translation

■ Dialogue generation

■ Document summarization

■ Automatic response generation

■ Input parsing

[48]

❖ Training

■ Each decoding step 
generates one loss

■ Negative log-likelihood of the 
true outcome at that point

■ Average all losses at each step

■ Decoder state input is true 
outcome of the previous one 
(not the actual prediction)



From Encoder-Decoder to Attention

❖ seq2seq limitations

■ Full sentence into a fixed-sized, unique embedding (bottleneck)

■ Different parts of the decoder focus on different parts of the input

■ In inference

○ Greedy decoding: Carrying on errors

○ Beam search decoding: Keep top k branches, find most probable path

❖ Solution: Let each decoder step decide the part of the whole input to use

[49]



Seq2seq with attention
❖ Each decoder state

■ Compute a score per enc. hidden state

■ Turn into probabilities (softmax)

■ Dot prod. w/ hidden enc. states

■ Sum to make the fix-len

■ Concatenate with hidden decoder state

■ Output and fed to next step

[49,57,58]



Why seq2seq with attention

❖ Enables one different context for each 

decoding step 

■ No fix-sized bottleneck

❖ Provides shortcuts (better gradient flows)

❖ More fine-grained -> better interpretability

[49]



A typical RNN model today...

“An encoder-decoder 
bidirectional, 
multilayered 
LSTM-based 
RNN with an 

attention mechanism” 
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