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From Encoder-Decoder to Attention

❖ seq2seq limitations

■ All input into a fixed-sized bottleneck

■ Different decoder focus on input

❖ Solution: Attention

■ Let each decoder step decide which part of the input use

[49]



Attention overview

[50]



Seq2seq with attention
❖ Each decoder state

■ Scores enc. hidden states w/ dec. prev. state (alignment NN model)

■ Turn into probabilities (softmax)

■ Dot prod. w/ hidden enc. states

■ Sum to make the fix-len context vec 

■ Concatenate with hidden decoder state

■ Output and fed to next step
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The limits of RNNs

❖ The main challenges of RNNs

■ Distances (long, short or both?)

■ Directionality (data accessibility)

■ Poor parallelization

❖ How can we solve that?

■ As long as we work with endless sequences

○ Memory is hard to implement

○ Computational dependencies by sequential design



The Attention revolution

❖ Get rid of the sequence? Attention on large inputs

■ Sequences, memory, dependencies

■ Meet the Transformers

❖ Closer to fully connected than RNNs

❖ All tokens processed concurrently (instead of recurrently)

■ Inputs are sets instead of sequences

■ Self-attention for focus

[53]



Transformers and Order Position
❖ Ordering sets

■ Add order information on the input token embedding space

■ Token representation changes with position

❖ Positional encoding feat. Sinusoidal func.

■ Add the position vector to each embedding (residual to keep alive)

○ Saves params

○ Orthogonal wrt embedding?

○ Concentrated in a few positions

■ Provides consistent distances

○ Indep. sequence length (periodicity)

○ Bounded range of values

○ Deterministic

[54,55]
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How basic attention works

❖ Every input token has its own embedding

❖ All tokens stacked (e.g., word embeddings ) are the input

❖ Length of token is arbitrary (e.g., 512)

❖ Number of tokens defined by dataset (fixed dict.)



Why attention works

❖ For all X ∈ tokens, for all Y ∈ tokens: What is the relevance of Y for X?

❖ Learn all combinations, and use a ‘mask’ to select

■ Query for what you want to match (current token X)

■ Keys to match the query with (other token Y)

■ Value to be returned (relevance between both)

❖ Let’s do it weightedly, through matrix multiply

■ No dependencies. Parallelism!



3 not-so-little matrices

❖ Three weight matrices (Q,K,V) learnt

■ One row per input token

■ Arbitrary length (typically smaller dimensionality than token)

❖ Q & K matrices store the sorted & relative importance of pairs of tokens

❖ V matrix stores the information about the token itself

❖ With Q & K we get a relevance [0,1], used to weight V

[57,95]



Basic attention

❖ Attention of token X on token Y (all with all): 

■ Dot product between Q vector of X and K vector of Y 

■ Stabilize gradients (div. square root of vector length)

■ Normalize (apply softmax)

■ Multiply by V vector of Y (weighting Y by relevance of Y w.r.t X)

■ Sum over all Y -> output for X

■ In: 1 Token embedding, 1 Q row, K matrix (n T.E.), V matrix (n T.E.) // Out: 
1 Token embedding

[57,83]



Multiple Embedding Spaces

❖ Multi-headed attention

❖ Learn different sets of Q,K,V matrices

❖ Each provides a different view on the data (enforceable on att. weights)

❖ On output

■ Concat all output embeddings in feature dimension

■ Multiply by another learnt matrix to fit dimensionality

❖ Attention heads can be computed in parallel



Computing in Parallel

❖ Attention relates inputs at arbitrary distance within 
constant num. ops

■ Close or far away, it’s the same

■ Fully-connected style (all with all)

❖ ByteNet does so within a logarithmic num. ops (dilated 
convolutions)

❖ Convs s2s does so within a linear num. ops

❖ Retaining memory is more complicated as this grows

[59,60,84]



The Encoder block
❖ Self-Attention + Feed Forward

■ Each token follows its own path

❖ Both with 

■ Residual connection

○ To self-attend or not

■ Layer normalization

○ Sample-wise layer-wide mean 
and var. 

❖ Stack several of these blocks

[57]



The Decoder block
❖ Same components as encoder

■ Self-Attention in the past only       

(mask out future tokens, unidirectional)

■ Encoder-Decoder attention                   

(K & V from encoder, Q from decoder.)

■ Feed Forward, Residual & Norm

❖ Input: Special token, then previous token 
(also with pos. encoding)

[57,85]

Self-attention: Look at what has 
been decoded

Encoder-Decoder Attention: Look 
at the original input



From input to output

❖ Linear layer 

■ Creates logits

■ Dictionary length

❖ Softmax 

■ Probabilities

[57]



Layer Normalization

❖ Normalize sample-wise (e.g., BS=1)

■ Batch independent

■ Unique across layer

❖ Compute mean and std-dev across 

spatial dimensions (1 for sequences) 

and channels

[56, 56bis]



Loss & Training

❖ A transformer outputs a vector of probabilities a number of times

■ Cross entropy loss against golden probabilities

❖ Batch training requires padding

❖ As with RNNs, and due to their masks, decoders use 

■ Greedy search (explore one path only)

■ Beam search (explore n branches on each step)

[61]



Transformer details

❖ In the original paper

■ Adam optimizer. Warm-up round and then decay

■ Dropout on residual connections, embeddings sums and pos. enc.

■ Label smoothing (One-hot vector enc + uniform distr. [0,1])

[53]



Limitations of Transformers

❖ Reduced resolution (averaging attention)

■ Multi-head to circumvent

❖ Sequence length

■ All tokens must be computed concurrently

■ Context needed and no memory implemented

❖ Computational cost / Complexity

■ All relations are learnt (quadratic self-attention complexity). No limited 
connectivity by design.

[62]



A serious issue
❖ Transformers are efficient, but expensive

■ Worthy trade-off?

■ Measuring efficiency

❖ XAI (too many heads)

❖ Bias (too many data)

❖ Google ethical crisis (Gebru, Bengio, ...)

[63,64,73,74,75]



Fancy Transformers



Beyond Encoder-Decoder

❖ Encoder-Decoder was inherited from RNN times 

❖ Transformers (aka self-attention) are beyond that

❖ What works:

■ Pre-train heavy (as in millions of $)

■ Fine-tune for everything

❖ The story goes: GPT - BERT - GPT2 - GPT3 - ….

[68,69,76]



The two (main) sides

❖ Encoder only (e.g., BERT)

■ Bidirectional Transformer

■ Gain context (classification↑)

❖ Decoder only (e.g., GPT)

■ Left to Right Transformer

■ Gain auto-regression (generation↑)

[68,69,76]

❖ GELU instead of ReLU
■ Gaussian Error Linear Unit

Denoising self-supervised 
(encoder)

Language modeling 
(decoder)



Famous Transformers: BERT
❖ For text generation: Encoder only

■ Token embedding

■ Special token to separate sentences

■ Sentence embedding

■ Pos. encoding

[65,66]



Famous Transformers: BERT
❖ Train two tasks concurrently

■ Masked LM: Mask 15% of tokens, and try to predict them

■ NSP (Sentence prediction): Is the follow up sentence correct?

○ Different relation than LM

■ Corpus: Books and Wikipedia

○ Long sentences and contexts

[65,66]



Famous Transformers: BERT

❖ Pre-train (bulk text) + fine-tuning (paraphrasing, QA, classification, ...)

❖ BERT-base:

■ 6 blocks, 12 attention heads, 110M params (4 TPUs 4 days)

❖ BERT-large

■ 12 blocks, 16 attention heads, 340M params (16 TPUs 4 days)

❖ Fine-tuning: 1 TPU 1 hour

[65,66]



Fine-tuning BERT

[66]

❖ 2 sentence in / 1 class out ❖ 1 sentence in / 1 class out



Fine-tuning BERT

[66]

❖ N sentence in / 1 sentence out ❖ 1 sentence in / 1 sentence out



Famous Transformers: GPT
❖ GPT

■ Pretrain + fine-tune (117 M params)

❖ GPT2

■ More data, 48 blocks, zero-shot task/transfer (1,500 M params)

■ 1024 tokens

❖ GPT3 (& DALL-E 2)

■ More data, 96 blocks, 96 heads, (175 B params)

■ 2048 tokens

[67,78]

Masked decoder only!



Pre-training Transformers like GANs

[79,80]

❖ Masked Language Model (BERT)

■ Limited token efficiency due to Mask (less info per token)

■ Differences between train/test (Mask is gone)

❖ Electra

■ Generator / Discriminator scheme (keep the former)

■ Validate each token

■ Full token efficiency

■ Faster (12x)



 Vision Transformers (ViTs)
❖ Lack inductive biases implicit in CNNs

■ Translation invariance (weight sharing)

■ Locality (limited connectivity)

❖ These can be learnt from enough data (14M - 300M samples)

■ Reduced by knowledge distillation - soft labels - noisy student (?)

❖ Each pixel attending to each other pixel is unfeasible

■ Several local self-attention mechanisms are being proposed

[70,72]



 Vision Transformers (ViTs)

❖ Doing CNNs with Transformers

■ Self-attention limited spatially

■ Images flattened to 1D

■ Positional encodings

■ Attention bottlenecks (limits)

■ CNN encoders

[70,71,77,78]



So what are Transformers?

❖ Great models for processing data which can be represented as a set 
of independent numerical features

■ More powerful and smarter version of FFN nets

■ If computation and data availability allows!

❖ Capable of including location info through Positional Encodings

❖ Can be good for sequences (not too long). Not for streams, recursion 
and hierarchies.

❖ The biggest hammer out there right now

[78,81,82]



Limits of Transformers



Limits of Transformers

❖ GPT-3



Easy way out

❖ GPT-3



Do NOT trust a language model



Do NOT trust a language model



Prompts

❖ Prompt = Context (in-context learning)

■ Part of input tokens

❖ Prompt engineering

■ Prompt injection

■ Jail-breaking



Unsafe



Chain of thought

❖ “Let’s think step by step”

❖ Autoregressive context

[98]



Chain of thought

❖ Easy to boost

❖ Easy to fool

■ Injection

[98]



Chain of thought

❖ Performance boost

[97]



AI is not people

[96]

❖ The 20 questions game

■ Commitment vs convergence

❖ Role playing

■ In-character vs improvisation



Won’t shut up

https://docs.google.com/file/d/1uFb4KBouDjk6ST6AMtYC_-BYqPeRvkFa/preview


Countermeasures
Just ask it about Muslims

[4]

https://docs.google.com/file/d/14_wtb6VdyqKAiwK9g9jCvDZo5YLo2BdC/preview
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