
Dario Garcia Gasulla
dario.garcia@bsc.es

Deep Learning - MAI
Transfer Learning

THEORY
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“Don’t be a hero” - Andrej Karpathy

The Transfer Learning philosophy

2



Learning from scratch

● Trying to learn from scratch is difficult and arduous

○ Learn the basics before learning complex stuff

● Easier to learn if you already know something

○ Some basic stuff is common to many tasks

○ e.g., learning to “see”

3



Why Transfer Learning

● You can learn faster

○ If I know that much, I’m that much closer to my goal

● You can learn better

○ Limited amount of things you can learn from data before finding 

spurious patterns. 

○ What would you rather learn from your data?
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Putting things in perspective
The ImageNet ¿success?
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Growing up

● 1998 LeNet-5

● 2012 AlexNet

● 2014 VGG19

● 2014 GoogLeNet

● 2015 Inception-V3

● 2015 ResNet-56
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What we get

● We solved 
ImageNet
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What we pay

● Data labeling, transfer & storage

○ e.g., 1,000 images per class

● Training cost

○ Money (hardware, energy, salaries)

○ Environmental cost (CO2 emissions)

○ Human effort

○ Highly skilled professionals

○ Architecture design

○ Hyper-parameter fine tuning
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The ImageNet way is no way

● We cannot do that for every single problem out there

○ The cost is too high. But more importantly...
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The ImageNet way is no way

● We cannot do that for every single problem out there

○ The cost is too high. But more importantly...

● We do not want to do that for every single problem out there

○ TL to the rescue

● Transfer learning reduces the requirements on…

○ Data (implicit reuse of data)

○ Cost (faster convergence)

○ Effort (initial design & parametrization)
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Transfer Learning variables

Train set

Test set
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● How much error can we expect?

● What does it depend on?
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Transfer Learning variables

Train set

Test set
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● How much error can we expect?

● What does it depend on?

○ Domain (must)

○ Task (should) 

○ Intersect & size
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Representation Learning & 
Classifiers
Learning to describe
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A typical classifier

•Support Vector Machine (SVM) is just 
a classifier (a very good one).

•SVM find the best boundary separating 
the data instances into different classes 
in a given feature space.
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A good classifier

•SVMs using the kernel trick can 
overcome the linear limitation through an 
implicit mapping to a higher dimensional 
feature space
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Deep Neural Networks and classifiers

Linear
Classifier

Intermediate 
representations

OutputInput
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Classifiers and Representations

● Classifiers are Task-specific

○ We can rarely reuse them for a different task, as they are 

bounded to the label space

● Representations are Domain-specific

○ We can often reuse them for a different Task if we 

remain in the same feature space!
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Reusing Deep Representations
Save the Earth - Reuse DNNs
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What can be saved?

Linear
Classifier

Intermediate 
representations

OutputInput
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What can be saved?

Linear
Classifier

Intermediate 
representations

OutputInput
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Transfer Learning - Feature Extraction

● Extract output activations

● Pre-trained model is a feature extractor
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When Feature Extraction

● Very scarce target data

● Very large source data

● Very similar task or direct subset
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Better Feature Extraction

● Linear SVM usually enough

○ Beware dimensionality

○ Kernel likely to overfit

● If target data size allows

○ 1-3 FC layers
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Advanced Feature Extraction

● What about the other activations?
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Knowledge inside DNN

FC7
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Knowledge inside DNN

Task
Labels

Input
Domain More 

influenced by 
domain

More 
influenced by 
task
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Knowledge inside DNN

Task
Labels

Input
Domain More 

influenced by 
domain

Simple 
features

More 
influenced by 
task

Complex 
features

Visualizations from: Yosinski, Jason, et al. "Understanding neural networks through deep 
visualization." arXiv preprint arXiv:1506.06579 (2015). 27



Which layers to use?

● If source & target task are VERY similar
use the “classifier” layers
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Which layers to use?

● If source & target task are not very similar broaden the scope

● Early layers are always decent (generic)

● Late layers are sometimes 

very good or very bad 

(discriminative)
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Post-processing neural activations

● Beware of (relative) dimensionality

○ FC layers have lots of activations

○ Conv layers activations are spatially dependent

● Beware of scale

○ Different layers activate with different strength

○ BN?

VGG16 Convs FCs
# Layers: 14 2
Activations: 33% 66%

Conv2  Conv13          FC2
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Normalizing neural activations

● L2-norm by layer

○ Fixes scale (careful if mixing layers!)

● Feature standardization

○ By column

○ Representation relative to the rest of dataset

○ Statistics from train applied on val/test
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Reducing dimensionality

● Convolutional GAP

● PCA or others dim. red. techniques

○ Mixing of features

● Discretization of features

○ Reducing dimensional complexity, no dimensionality

○ e.g., (-1,0,1)



Full-Network Embedding

● VGG16 FNE dimensionality: 12K
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Feature extraction in action

● High similarity source - target

Network pre-trained on Places2 for mit67 and on ImageNet for the rest.
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Feature extraction in action

● High similarity source - target

Network pre-trained on Places2 for mit67 and on ImageNet for the rest.

-0.3 -0.4 -0.5

+2.9
+4.2

Task similarity makes single layer l2-norm competitive
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Feature extraction in action

● High similarity source - target

Network pre-trained on Places2 for mit67 and on ImageNet for the rest.

+7.9

Data (external or not) can make fine tuning worth the COST
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Feature extraction in action

● Low similarity source - target (most real-world scenario!)

Data (external or not) makes fine tuning worth the COST

Network pre-trained on ImageNet for mit67 and on Places2 for the rest.

+3.3 +11.9 +15.4 +17.5 +8.0 +9.3 +10.6
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Factors deep representations quality

● Source task
○ Total volume 
○ Class variety

● Target task
○ Source-target similarity

● Starting Model
○ Capacity
○ Accuracy

38



Factors deep representations quality

● Source task
○ Total volume 
○ Class variety

● Target task
○ Source-target similarity

● Starting Model
○ Capacity
○ Accuracy

If you have all of this, feature 
extraction plus a classifier 
will get you close to 
state-of-the-art in 10 minutes 
of CPU
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Fine Tuning
To improve, to remember, to forget
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Fine tuning

Intermediate 
representations

Input

Features learned 
for the Source 
Task

Can we make 
them better?
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Fine tuning

Intermediate 
representations

Input

D
N
N

Target 
Task
Labels

D
N
N
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Fine tuning

Intermediate 
representations

Input

D
N
N

Target 
Task
Labels

D
N
N

Error back-propagation

Effect of fine tuning is diminished by depth
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The choices in fine tuning

● Reuse and freeze
○ Use source task status
○ “Its good as it is”

● Reuse and fine tune
○ Start from source task status, adjust with target task
○ “It’s a good starting point”

● Train from scratch
○ Reinitialize weights randomly, train with target task only
○ “It’s pretty much useless”
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The order of fine tuning

Freeze Fine tune Random 

45



The order of fine tuning

Freeze Layers which are pretty stable and universal
Increase with source-target similarity
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The order of fine tuning

Fine tune Layers which are pretty similar but improvable
Increase with source-target similarity & data volume
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The order of fine tuning

Random Layers which are pretty dissimilar
Increase with source-target dissimilarity & data volume
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Trade-off of fine tuning

● Reuse and freeze
○ Remove parameters for target to learn (needs data but allows focus)
○ Adds noise

● Reuse and fine tune
○ Allows to focus learning (requires data)
○ Adds bias

● Random init
○ Again, from the top (cost, cost, cost)
○ Tailor made for target
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FT vs FE
To improve, to remember, to forget
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Trade-offs

               Performance           Footprint                              Human cost
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Training samples per class
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Key takeaways

● If possible, always use a pre-trained net

○ Don’t be a hero

● Consider the gradient of representations

○ From data to task

● Always analyze

○ Source/Target similarity

○ Data availability
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Key takeaways

● Fine tune if possible

○ Freeze from the bottom

○ Fine tune the middle

○ Retrain from scratch at the top

● Feature extraction

○ Must-do baseline (cheap and easy!)

○ Best approach if data volume is short
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Parameter Efficient Fine-tuning
LoRA: Low Rank Adaptation
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Fine-tuning modifying less parameters

● Freeze original weights W (dxk)

● Add a new set of weights D to be added to W

● Rank: Linearly independent columns in a matrix

● Decompose D: (dxk) = (dxr)(rxk)

○ Low rank: Lose of independent columns (Noisy approximation)

○ High rank: Keep dependent columns (No parameter gain)

56arxiv.2106.09685



Fine-tuning modifying less parameters

● Before training, 

○ (rxk) vector initialized with zeros 

○ (dxr) vector initialized with gaussian

● After training, apply delta to W

● One hyperparameter to choose = r
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