

# **Deep Learning - MAI**

#### Transfer Learning

#### THEORY

Dario Garcia Gasulla *dario.garcia@bsc.es* 



# "Don't be a hero" - Andrej Karpathy

The Transfer Learning philosophy

# Learning from scratch

- Trying to learn from scratch is difficult and arduous
  - Learn the basics before learning complex stuff
- Easier to learn if you already know something
  - Some basic stuff is common to many tasks
  - e.g., learning to "see"



# Why Transfer Learning

- You can learn **faster** 
  - If I know that much, I'm that much closer to my goal
- You can learn **better** 
  - Limited amount of things you can learn from data before finding spurious patterns.
    - What would you rather learn from your data?





# **Putting things in perspective**

The ImageNet ¿success?

# Growing up

• **1998** LeNet-5

2012 AlexNet

SoftmaxQuiput



- 2014 VGG19
- 2014 GoogLeNet
- 2015 Inception-V3
- **2015** ResNet-56

Ware water ware standing and ware and a standing an

# What we get

HIGH PERFORMANCE



# What we pay

- Data labeling, transfer & storage
  - e.g., 1,000 images per class
- Training cost
  - Money (hardware, energy, salaries)
  - Environmental cost (CO<sub>2</sub> emissions)
  - Human effort
    - Highly skilled professionals
    - Architecture design
    - Hyper-parameter fine tuning



# The ImageNet way is no way

- We **cannot** do that for every single problem out there
  - The cost is too high. But more importantly...





# The ImageNet way is no way

- We **cannot** do that for every single problem out there
  - The cost is too high. But more importantly...
- We **do not want to** do that for every single problem out there
  - TL to the rescue
- Transfer learning reduces the requirements on...
  - Data (implicit reuse of data)
  - Cost (faster convergence)
  - Effort (initial design & parametrization)



# Transfer Learning variables

- How much error can we expect?
- What does it depend on?

APTICIAL INTELLICENCE

#### Test set













# Transfer Learning variables

- How much error can we expect?
- What does it depend on?
  - Domain (must) Ο
  - Task (should) Ο
    - Intersect & size  $\bigcirc$











#### Test set

















# **Representation Learning & Classifiers**

Learning to describe

# A typical classifier

- •Support Vector Machine (SVM) is just a classifier (a very good one).
- •SVM find the best boundary separating the data instances into different classes in a **given** feature space.





# A good classifier

•SVMs using the **kernel trick** can overcome the linear limitation through an **implicit** mapping to a higher dimensional feature space





### **Deep Neural Networks and classifiers**



# **Classifiers and Representations**

- Classifiers are **Task**-specific
  - We can rarely reuse them for a different task, as they are bounded to the **label space**

- Representations are **Domain**-specific
  - We can often reuse them for a different Task if we remain in the same **feature space**!





# **Reusing Deep Representations**

Save the Earth - Reuse DNNs

### What can be saved?





### What can be saved?





# **Transfer Learning - Feature Extraction**

- Extract output activations
- Pre-trained model is a feature extractor





### **When Feature Extraction**

- Very scarce target data
- Very large source data
- Very similar task or direct subset



### **Better Feature Extraction**

- Linear SVM usually enough
  - Beware dimensionality
  - Kernel likely to overfit

If target data size allows
1-3 FC layers



### **Advanced Feature Extraction**

• What about the other activations?



### Knowledge inside DNN





# Knowledge inside DNN







# Knowledge inside DNN





Visualizations from: Yosinski, Jason, et al. "Understanding neural networks through deep visualization." *arXiv preprint arXiv:1506.06579* (2015).

# Which layers to use?

APTICIAL INTELLICENCE



# Which layers to use?

- If source & target task are not very similar broaden the scope
- Early layers are always decent (generic)
- Late layers are sometimes

very good or very bad

(discriminative)





# Post-processing neural activations

- Beware of (relative) dimensionality
  - FC layers have lots of activations

- VGG16ConvsFCs# Layers:142Activations:33%66%
- Conv layers activations are spatially dependent

- Beware of scale
  - Different layers activate with different strength
  - BN?





# Normalizing neural activations

- L2-norm by layer
  - Fixes scale (careful if mixing layers!)

- Feature standardization
  - By column
  - Representation relative to the rest of dataset
  - Statistics from train applied on val/test



# **Reducing dimensionality**

Convolutional GAP

- PCA or others dim. red. techniques
  - Mixing of features

- Discretization of features
  - Reducing dimensional complexity, no dimensionality
    - e.g., (-1,0,1)



# **Full-Network Embedding**

#### • VGG16 FNE dimensionality: 12K





• High similarity source - target

Network pre-trained on **Places2** for mit67 and on **ImageNet** for the rest.

|              | (1                         | 0                | 0                          | 15102       | logs        | ch                         | 101 110        | 1            | ies a                        |
|--------------|----------------------------|------------------|----------------------------|-------------|-------------|----------------------------|----------------|--------------|------------------------------|
| Dataset      | mito                       | cub <sup>2</sup> | HOW                        | cats        | sdog        | calter                     | food           | textu        | WOOL                         |
| Baseline fc6 | 80.0                       | 65.8             | 89.5                       | 89.3        | 78.0        | $91.4 \pm 0.6$             | $61.4 \pm 0.2$ | 69.6         | $70.8 \pm 6.6$               |
| Baseline fc7 | 81.7                       | 63.2             | 87.0                       | 89.6        | 79.3        | $89.7 \pm 0.3$             | $59.1 \pm 0.6$ | 69.0         | $68.9{\scriptstyle~\pm 6.8}$ |
| Full-network | 83.6                       | 65.5             | 93.3                       | 89.2        | 78.8        | $91.4{\scriptstyle\pm0.6}$ | 67.0±0.7       | 73.0         | $74.1 \pm 6.9$               |
| SotA         | 86.9<br>[ <mark>5</mark> ] | 92.3<br>[10]     | 97.0<br>[ <mark>5</mark> ] | 91.6<br>[6] | 90.3<br>[5] | 93.4<br>[31]               | 77.4<br>[4]    | 75.5<br>[17] | -                            |
| ED           | 1                          | 1                | 1                          | ×           | 1           | ×                          | ×              | ×            |                              |
| FT           | 1                          | 1                | 1                          | 1           | 1           | 1                          | 1              | ×            | -                            |

• High similarity source - target

Network pre-trained on **Places2** for mit67 and on **ImageNet** for the rest.

| Dataset      | mito               | cub2         | 00 Rowe     | ers102<br>cats- | logs<br>sdog | altech                     | 101 food10           | textu        | res wood       |      |
|--------------|--------------------|--------------|-------------|-----------------|--------------|----------------------------|----------------------|--------------|----------------|------|
| Baseline fc6 | 80.0               | 65.8         | 89.5        | 89.3            | 78.0         | $91.4{\scriptstyle\pm0.6}$ | $61.4 \pm 0.2$       | 69.6         | $70.8 \pm 6.6$ | +2.9 |
| Baseline fc7 | 81.7               | 63.2         | 87.0        | 89.6            | 79.3         | $89.7{\pm}0.3$             | $59.1 \pm 0.6$       | 69.0         | $68.9 \pm 6.8$ | +4.2 |
| Full-network | 83.6               | -0.3         | 93.3        | -0.4            | -0.5         | $91.4 \pm 0.6$             | 67.0±0.7             | 73.0         | $74.1 \pm 6.9$ |      |
| SotA         | 86.9<br><b>5</b> ] | 92.3<br>[10] | 97.0<br>[5] | 91.6<br>6       | 90.3<br>[5]  | 93.4<br>[31]               | 77.4<br>[ <b>4</b> ] | 75.5<br>[17] | -              |      |
| ED<br>FT     | 11                 | 1            | 1           | ×               | 1            | ×                          | ××                   | ××           | -              | -    |



#### Task similarity makes single layer l2-norm competitive

• High similarity source - target

Network pre-trained on **Places2** for mit67 and on **ImageNet** for the rest.

|              | C                          |      | 00                         | 15102       | 1025 .c | c'N                        | 101 10                       | 1            | ce <sup>s</sup> a            |
|--------------|----------------------------|------|----------------------------|-------------|---------|----------------------------|------------------------------|--------------|------------------------------|
| Dataset      | mito                       | cub2 | Row                        | cats        | sdog.   | caltee                     | food                         | textu        | WOOD                         |
| Baseline fc6 | 80.0                       | 65.8 | 89.5                       | 89.3        | 78.0    | $91.4 \pm 0.6$             | $61.4 \pm 0.2$               | 69.6         | $70.8 \pm 6.6$               |
| Baseline fc7 | 81.7                       | 63.2 | 87.0                       | 89.6        | 79.3    | $89.7{\pm}0.3$             | $59.1{\scriptstyle \pm 0.6}$ | 69.0         | $68.9{\scriptstyle~\pm 6.8}$ |
| Full-network | 83.6                       | 65.5 | 93.3                       | 89.2        | 78.8    | $91.4{\scriptstyle\pm0.6}$ | $67.0 \pm 0.7$               | 73.0         | 74.1±6.9                     |
| SotA         | 86.9<br>[ <mark>5</mark> ] | 92.3 | 97.0<br>[ <mark>5</mark> ] | 91.6<br>[6] | 90.3    | 93.4<br>[31]               | 77.4<br>(=)                  | 75.5<br>[17] | -                            |
| ED           | 1                          | 1    | 1                          | ×           | 1       | ×                          | ×                            | ×            | -                            |
| FT           | 1                          | 1    | 1                          | 1           | 1       | 1                          | 1                            | ×            | -                            |

Data (external or not) can make fine tuning worth the COST

• Low similarity source - target (*most real-world scenario!*)

Network pre-trained on ImageNet for mit67 and on Places2 for the rest.





Data (external or not) makes fine tuning worth the COST

# Factors deep representations quality

- Source task
  - Total volume
  - Class variety
- Target task
  - Source-target similarity
- Starting Model
  - Capacity
  - Accuracy





# Factors deep representations quality

- Source task
  - Total volume
  - Class variety
- Target task

- Source-target similarity
- Starting Model
  - Capacity
  - Accuracy

If you have all of this, feature extraction plus a classifier will get you *close* to state-of-the-art in 10 minutes of CPU







# **Fine Tuning**

To improve, to remember, to forget

# **Fine tuning**





# **Fine tuning**





# **Fine tuning**



Effect of fine tuning is diminished by depth

Task Labels



# The choices in fine tuning

#### • Reuse and **freeze**

- Use source task status
- "Its good as it is"

#### • Reuse and fine tune

- Start from source task status, adjust with target task
- "It's a good starting point"

#### • Train from scratch

- Reinitialize weights randomly, train with target task only
- "It's pretty much useless"







HIGH PERFORMANCE



HIGH PERFORMANCE



HIGH PERFORMANCE APTICIAL INTELLICENCE



# Trade-off of fine tuning

#### • Reuse and **freeze**

- Remove parameters for target to learn (needs data but allows focus)
- Adds noise

#### Reuse and fine tune

- Allows to focus learning (requires data)
- Adds bias

#### • Random init

- Again, from the top (cost, cost, cost)
- Tailor made for target







# FT vs FE

To improve, to remember, to forget

### Trade-offs

|    | Perforr   | nance     | Footp     | print      | Human cost |           |      |  |
|----|-----------|-----------|-----------|------------|------------|-----------|------|--|
|    | $V_{ACC}$ | $T_{ACC}$ | $P_{AVG}$ | $E_{CO_2}$ | T          | $n_{EXP}$ | A    |  |
| FT | 77.46     | 73.86     | 276.1W    | 201.54kg   | 1,825.72h  | 480       | 4-6h |  |
| FE | 74.65     | 72.73     | 124.1W    | 3.84kg     | 60.02h     | 80        | 0-1h |  |



# Training samples per class

HIGH PERFORMANCE



### Key takeaways

- If possible, always use a pre-trained net
  - Don't be a hero
- Consider the gradient of representations
  - From data to task
- Always analyze
  - Source/Target similarity
  - Data availability



## Key takeaways

- Fine tune if possible
  - Freeze from the bottom
  - Fine tune the middle
  - Retrain from scratch at the top
- Feature extraction
  - Must-do baseline (cheap and easy!)
  - Best approach if data volume is short





# **Parameter Efficient Fine-tuning**

LoRA: Low Rank Adaptation

# Fine-tuning modifying less parameters

- Freeze original weights W (dxk)
- Add a new set of weights D to be added to W
- Rank: Linearly independent columns in a matrix
- Decompose D: (dxk) = (dxr)(rxk)



Figure 1: Our reparametrization. We only train A and B.

- Low rank: Lose of independent columns (Noisy approximation)
- High rank: Keep dependent columns (No parameter gain)



# Fine-tuning modifying less parameters

- Before training,
  - (rxk) vector initialized with zeros
  - (dxr) vector initialized with gaussian
- After training, apply delta to W
- One hyperparameter to choose = r



#### Dario Garcia-Gasulla (BSC) dario.garcia@bsc.es





ARTIFICIAL INTELLIGENCE