
Dario Garcia Gasulla
dario.garcia@bsc.es

Deep Learning - MAI
Transfer Learning

THEORY

1

“Don’t be a hero” - Andrej Karpathy

The Transfer Learning philosophy

2

Learning from scratch

● Trying to learn from scratch is difficult and arduous

○ Learn the basics before learning complex stuff

● Easier to learn if you already know something

○ Some basic stuff is common to many tasks

○ e.g., learning to “see”

3

Why Transfer Learning

● You can learn faster

○ If I know that much, I’m that much closer to my goal

● You can learn better

○ Limited amount of things you can learn from data before finding

spurious patterns.

○ What would you rather learn from your data?

4

Putting things in perspective
The ImageNet ¿success?

5

Growing up

● 1998 LeNet-5

● 2012 AlexNet

● 2014 VGG19

● 2014 GoogLeNet

● 2015 Inception-V3

● 2015 ResNet-56
6

What we get

● We solved
ImageNet

7

What we pay

● Data labeling, transfer & storage

○ e.g., 1,000 images per class

● Training cost

○ Money (hardware, energy, salaries)

○ Environmental cost (CO2 emissions)

○ Human effort

○ Highly skilled professionals

○ Architecture design

○ Hyper-parameter fine tuning

8

The ImageNet way is no way

● We cannot do that for every single problem out there

○ The cost is too high. But more importantly...

9

The ImageNet way is no way

● We cannot do that for every single problem out there

○ The cost is too high. But more importantly...

● We do not want to do that for every single problem out there

○ TL to the rescue

● Transfer learning reduces the requirements on…

○ Data (implicit reuse of data)

○ Cost (faster convergence)

○ Effort (initial design & parametrization)

10

Transfer Learning variables

Train set

Test set

11

● How much error can we expect?

● What does it depend on?

11

Transfer Learning variables

Train set

Test set

12

● How much error can we expect?

● What does it depend on?

○ Domain (must)

○ Task (should)

○ Intersect & size

12

Representation Learning &
Classifiers
Learning to describe

13

A typical classifier

•Support Vector Machine (SVM) is just
a classifier (a very good one).

•SVM find the best boundary separating
the data instances into different classes
in a given feature space.

14

A good classifier

•SVMs using the kernel trick can
overcome the linear limitation through an
implicit mapping to a higher dimensional
feature space

15

Deep Neural Networks and classifiers

Linear
Classifier

Intermediate
representations

OutputInput

16

Classifiers and Representations

● Classifiers are Task-specific

○ We can rarely reuse them for a different task, as they are

bounded to the label space

● Representations are Domain-specific

○ We can often reuse them for a different Task if we

remain in the same feature space!

17

Reusing Deep Representations
Save the Earth - Reuse DNNs

18

What can be saved?

Linear
Classifier

Intermediate
representations

OutputInput

19

What can be saved?

Linear
Classifier

Intermediate
representations

OutputInput

20

Transfer Learning - Feature Extraction

● Extract output activations

● Pre-trained model is a feature extractor

21

Input

SV
M

Target
Task
Labels

When Feature Extraction

● Very scarce target data

● Very large source data

● Very similar task or direct subset

22

Better Feature Extraction

● Linear SVM usually enough

○ Beware dimensionality

○ Kernel likely to overfit

● If target data size allows

○ 1-3 FC layers

23

Advanced Feature Extraction

● What about the other activations?

24

Input

Knowledge inside DNN

FC7

25

Knowledge inside DNN

Task
Labels

Input
Domain More

influenced by
domain

More
influenced by
task

26

Knowledge inside DNN

Task
Labels

Input
Domain More

influenced by
domain

Simple
features

More
influenced by
task

Complex
features

Visualizations from: Yosinski, Jason, et al. "Understanding neural networks through deep
visualization." arXiv preprint arXiv:1506.06579 (2015). 27

Which layers to use?

● If source & target task are VERY similar
use the “classifier” layers

28

Which layers to use?

● If source & target task are not very similar broaden the scope

● Early layers are always decent (generic)

● Late layers are sometimes

very good or very bad

(discriminative)

29

Post-processing neural activations

● Beware of (relative) dimensionality

○ FC layers have lots of activations

○ Conv layers activations are spatially dependent

● Beware of scale

○ Different layers activate with different strength

○ BN?

VGG16 Convs FCs
Layers: 14 2
Activations: 33% 66%

Conv2 Conv13 FC2

30

Normalizing neural activations

● L2-norm by layer

○ Fixes scale (careful if mixing layers!)

● Feature standardization

○ By column

○ Representation relative to the rest of dataset

○ Statistics from train applied on val/test

31

Reducing dimensionality

● Convolutional GAP

● PCA or others dim. red. techniques

○ Mixing of features

● Discretization of features

○ Reducing dimensional complexity, no dimensionality

○ e.g., (-1,0,1)

Full-Network Embedding

● VGG16 FNE dimensionality: 12K

33

Feature extraction in action

● High similarity source - target

Network pre-trained on Places2 for mit67 and on ImageNet for the rest.

34

Feature extraction in action

● High similarity source - target

Network pre-trained on Places2 for mit67 and on ImageNet for the rest.

-0.3 -0.4 -0.5

+2.9
+4.2

Task similarity makes single layer l2-norm competitive
35

Feature extraction in action

● High similarity source - target

Network pre-trained on Places2 for mit67 and on ImageNet for the rest.

+7.9

Data (external or not) can make fine tuning worth the COST
36

Feature extraction in action

● Low similarity source - target (most real-world scenario!)

Data (external or not) makes fine tuning worth the COST

Network pre-trained on ImageNet for mit67 and on Places2 for the rest.

+3.3 +11.9 +15.4 +17.5 +8.0 +9.3 +10.6

37

Factors deep representations quality

● Source task
○ Total volume
○ Class variety

● Target task
○ Source-target similarity

● Starting Model
○ Capacity
○ Accuracy

38

Factors deep representations quality

● Source task
○ Total volume
○ Class variety

● Target task
○ Source-target similarity

● Starting Model
○ Capacity
○ Accuracy

If you have all of this, feature
extraction plus a classifier
will get you close to
state-of-the-art in 10 minutes
of CPU

39

Fine Tuning
To improve, to remember, to forget

40

Fine tuning

Intermediate
representations

Input

Features learned
for the Source
Task

Can we make
them better?

41

Fine tuning

Intermediate
representations

Input

D
N
N

Target
Task
Labels

D
N
N

42

Fine tuning

Intermediate
representations

Input

D
N
N

Target
Task
Labels

D
N
N

Error back-propagation

Effect of fine tuning is diminished by depth

43

The choices in fine tuning

● Reuse and freeze
○ Use source task status
○ “Its good as it is”

● Reuse and fine tune
○ Start from source task status, adjust with target task
○ “It’s a good starting point”

● Train from scratch
○ Reinitialize weights randomly, train with target task only
○ “It’s pretty much useless”

44

The order of fine tuning

Freeze Fine tune Random

45

The order of fine tuning

Freeze Layers which are pretty stable and universal
Increase with source-target similarity

46

The order of fine tuning

Fine tune Layers which are pretty similar but improvable
Increase with source-target similarity & data volume

47

The order of fine tuning

Random Layers which are pretty dissimilar
Increase with source-target dissimilarity & data volume

48

Trade-off of fine tuning

● Reuse and freeze
○ Remove parameters for target to learn (needs data but allows focus)
○ Adds noise

● Reuse and fine tune
○ Allows to focus learning (requires data)
○ Adds bias

● Random init
○ Again, from the top (cost, cost, cost)
○ Tailor made for target

49

FT vs FE
To improve, to remember, to forget

50

Trade-offs

 Performance Footprint Human cost

51

Training samples per class

52

Key takeaways

● If possible, always use a pre-trained net

○ Don’t be a hero

● Consider the gradient of representations

○ From data to task

● Always analyze

○ Source/Target similarity

○ Data availability

53

Key takeaways

● Fine tune if possible

○ Freeze from the bottom

○ Fine tune the middle

○ Retrain from scratch at the top

● Feature extraction

○ Must-do baseline (cheap and easy!)

○ Best approach if data volume is short

54

Parameter Efficient Fine-tuning
LoRA: Low Rank Adaptation

55

Fine-tuning modifying less parameters

● Freeze original weights W (dxk)

● Add a new set of weights D to be added to W

● Rank: Linearly independent columns in a matrix

● Decompose D: (dxk) = (dxr)(rxk)

○ Low rank: Lose of independent columns (Noisy approximation)

○ High rank: Keep dependent columns (No parameter gain)

56arxiv.2106.09685

Fine-tuning modifying less parameters

● Before training,

○ (rxk) vector initialized with zeros

○ (dxr) vector initialized with gaussian

● After training, apply delta to W

● One hyperparameter to choose = r

57

Dario Garcia-Gasulla (BSC)
dario.garcia@bsc.es

58

