
Dario Garcia Gasulla
dario.garcia@bsc.es

Deep Learning - MAI
Guided lab - Transfer Learning



Goal

● Experiment with transfer learning methods

● In the guided lab:

○ Model pre-trained in Imagenet

○ Try to solve the MIT67 indoor classification task



Set Up #1

❖ Upload the code to your account

https://github.com/UPC-MAI-DL/UPC-MAI-DL.github.io/tree/master/_codes/3.Embeddings

❖ Upload pre-trained models (~/.keras/models)

You can run the command locally, and upload the files from your .keras/models folder to your 

home directory in GPFS

A couple available here: /gpfs/projects/nct00/nct00038/ (VGG16 w/o top)



Set Up #2

● Link target dataset

/gpfs/projects/nct00/nct00038/mit67

● Used in:

○ fne_main.py

○ fine_tunning.py (L38-39)



Sample codes

❖ Fine-tuning: 

■ Use a pre-trained network and re-train it for a different task

❖ Feature-extraction: 

■ Use a pre-trained network as feature descriptor for a different task



Disclaimer

❖ Sample codes:

■ Kind of work

■ May have bugs

■ Are inefficient (particularly feature extraction)

■ Will not work out-of-the-box: Upload pre-train models and datasets

❖ Don't try to fix or extend the code. Copy something if it's useful and 

make your own code



Let’s look inside



Fine-tuning

❖ Training from scratch is often a bad idea. Factors of transferability:
■ Similarity between tasks
■ Size and variance of source task / target task
■ Layers transferred, locked and re-trained

❖ Play with:
■ Sources. VGG16 on ImageNet/Places is easy to find
■ Target tasks
■ Randomized/fine-tuned/frozen layers



Fine-tuning

❖ Code 
https://github.com/UPC-MAI-DL/UPC-MAI-DL.github.io/blob/master/_codes/3.Embeddings/fine_tuning.py

■ Keep fc layers or not (L46)
■ To freeze or not to freeze (L49)
■ Adding rand init layers (L55)

❖ To speed things up during the guided lab
■ Freeze lots of layers
■ Use only a subset of the train set

https://github.com/UPC-MAI-DL/UPC-MAI-DL.github.io/blob/master/_codes/3.Embeddings/fine_tuning.py


Feature Extraction
❖ Code sample for

■ Extract neural activations for images as processed by a pre-trained 
network

■ Apply a post-processing to these activations
■ Train a SVM with the resulting vector representations
■ Check classification performance

❖ To play:
■ Sources & Targets (same as fine-tuning)
■ Post-processing (FNE implemented)
■ Extracted layers

❖

❖



Feature Extraction
❖ Code
https://github.com/UPC-MAI-DL/UPC-MAI-DL.github.io/blob/master/_codes/3.Embeddings/fne_main.py

■ Create output variable (L48) 
■ Define layers to capture (L55)
■ Store activations of current batch (L80)
■ Postprocessing (L81, L87, L91)

https://github.com/UPC-MAI-DL/UPC-MAI-DL.github.io/blob/master/_codes/3.Embeddings/fne.py

■ Load full pre-trained model (L16)
■ Define layers to extract (L22)
■ Reduce problem size (L30), train & test SVM (L63)

https://github.com/UPC-MAI-DL/UPC-MAI-DL.github.io/blob/master/_codes/3.Embeddings/fne_main.py
https://github.com/UPC-MAI-DL/UPC-MAI-DL.github.io/blob/master/_codes/3.Embeddings/fne.py


Dario Garcia-Gasulla (BSC)
dario.garcia@bsc.es


