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Basic idea

LLM

Integrate LLM with an information 
retrieval engine

● Embed documents into vectors

● Find most similar documents

● Add as context for response



Why RAG

LLM

Access to up-to-date knowledge

Reduce hallucinations/Improve factuality

Reliable referencing (sources)



Why not RAG

LLM

Limited context

Cost of inference

Cost of persistence

No inter-document processing
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Phase 1: Document 
indexing
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docs

Embedding 
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1. Split each document into chunks
2. Embedd each chunk into a vector
3. Store in vector DB
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Phase 2: Inference

Source 
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1. Embed query
2. Find most similar chunk/s
3. Concatenate with query & generate
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Medprompt: 2 Inference
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Hybrid search

Hybrid search

Keyword (sparse vectors) + 
semantic search (dense vectors)

Sparse [0, 0, 0, 1, ..., 0, 0]

Dense [0.3, 0.1, 0.9, 0.1, ..., 0.5, 0.2]

Retrieval of low-relevance docs/chunks (1)
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Re-ranking
Retrieval of low-relevance docs/chunks (2)

https://weaviate.io/blog/cross-encoders-as-reranke
r

fast, but less accurate
(used in first stage retrieval)

more accurate due to the cross-attention 
computation between query and article tokens, but slow

(can be trained using datasets as MS-MARCO)https://cookbook.openai.com/examples/search_reranking_with_cross-encoder
s

https://weaviate.io/blog/cross-encoders-as-reranker
https://weaviate.io/blog/cross-encoders-as-reranker
https://cookbook.openai.com/examples/search_reranking_with_cross-encoders
https://cookbook.openai.com/examples/search_reranking_with_cross-encoders


Re-ranking
Retrieval of low-relevance docs/chunks (2)

https://weaviate.io/blog/cross-encoders-as-reranker

https://weaviate.io/blog/cross-encoders-as-reranker


Re-ranking
Retrieval of low-relevance docs/chunks (2)

https://huggingface.co/cross-encode
r

https://huggingface.co/cross-encoder
https://huggingface.co/cross-encoder


Pair RM

• based on microsoft/deberta-v3-large
• achieves superior performance by mixing the outputs of multiple LLMs

https://arxiv.org/pdf/2306.02561.pdf

Retrieval of low-relevance docs/chunks (2)

https://arxiv.org/pdf/2306.02561.pdf
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Non specialised embeddings (for medicine)

Medical Embedding Models
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Q:  What is the primary function of the spleen?

Non specialised embeddings (for medical retrieval)

A1:  The primary function of the spleen is unknown

A2: The spleen plays a key role in filtering and removing old or 
damaged red blood cells from the bloodstream            



A1:  The primary function of the spleen is unknown
Sim=0.913

A2: The spleen plays a key role in filtering and removing old or 
damaged red blood cells from the bloodstream            
Sim=0.667

Non specialised embeddings (for medical retrieval)

Q:  What is the primary function of the spleen?

similar but NOT relevant
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re-compute embeddings and 
re-index vector DB 

Medical Retrieval Embedding Models
Non specialised embeddings (for medical retrieval)



Medical Retrieval Embedding Models
Non specialised embeddings (for medical retrieval)

https://arxiv.org/abs/2307.00589

MedCPT: Query Encoder + Article Encoder + re-ranker cross-encoder

https://arxiv.org/abs/2307.00589


Medical Retrieval Embedding Models
Non specialised embeddings (for medical retrieval)

https://arxiv.org/abs/2307.00589

https://arxiv.org/abs/2307.00589


Medical Retrieval Embedding Models
Non specialised embeddings (for medical retrieval)

https://arxiv.org/abs/2307.00589

Initialized from 
PubMedBERT

Initialized from 
PubMedBERT

https://arxiv.org/abs/2307.00589


Medical Retrieval Embedding Models
Non specialised embeddings (for medical retrieval)

https://arxiv.org/abs/2307.00589

https://arxiv.org/abs/2307.00589


Medical Retrieval Embedding Models
Non specialised embeddings (for medical retrieval)

Results

• Biomedical Information Retrieval (BEIR benchmark)

⚬ SotA on 3/5 biomedical tasks

⚬ Improves its initialization PubMedBERT by huge margins

•  Biomedical article representations (RELISH article similarity benchmark)

⚬  MedCPT article encoder (DEnc) outperforms all other models

⚬ MedCPT article encoder improves PubMedBERT initialiationby over 10% 

•  Biomedical sentence representations (BIOSSES and MedSTS benchmarks)

⚬ On BIOSSES, MedCPT performs the best among all compared models

⚬  On the MedSTS dataset, MedCPT ranks the second and the performance is  

comparable to the highest-ranking model
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Unified text embedding & generation model: GRIT

https://twitter.com/Muennighoff/status/1758307967802224770
https://arxiv.org/abs/2402.09906

https://twitter.com/Muennighoff/status/1758307967802224770
https://arxiv.org/abs/2402.09906


Unified text embedding & generation model: GRIT



Use the same model as both 
embedder & reranker 

Boosts perf on 15/16 Retrieval 
dsets

Unified text embedding & generation model: GRIT
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Better embeddings → more dimensions → less efficient search

Large embeddings (for retrieval)



Matryoshka Embedding Models

Large embeddings (for retrieval)

https://huggingface.co/blog/matryoshka
https://arxiv.org/abs/2205.13147

https://huggingface.co/blog/matryoshka
https://arxiv.org/abs/2205.13147


Matryoshka Embedding Models

The loss values for each dimensionality are added together, resulting in a final loss value.

Large embeddings (for retrieval)



SotA RAG for 

medicine



https://arxiv.org/pdf/2402.13178.pdf

Benchmarking Retrieval-Augmented Generation for Medicine dec 2023

https://arxiv.org/pdf/2402.13178.pdf


https://arxiv.org/pdf/2402.13178.pdf

Full corpus + fusion of 4 
retrievers

Benchmarking Retrieval-Augmented Generation for Medicine

https://arxiv.org/pdf/2402.13178.pdf


Benchmarking Retrieval-Augmented Generation for Medicine

• Performance in specific tasks is 
strongly related to the used corpus

• Using a combination of all corpora 
provides highest performance

• Hybrid search yields better 
performance than dense search

• Retrievers show best performance 
when retrieving data from corpora 
within the same domain on which 
they have been trained*RRF-2 (fusion of BM25 and MedCPT)

dec 2023



Augmenting Black-box LLMs with Medical Textbooks for Clinical 
Question Answering

feb 2024

https://arxiv.org/abs/2309.02233

https://arxiv.org/abs/2309.02233


Improving Medical Reasoning through Retrieval and Self-Reflection 
with Retrieval-Augmented Large Language Models

jan 2024

https://arxiv.org/abs/2401.15269

https://arxiv.org/abs/2401.15269


Almanac—Retrieval-Augmented Language Models for Clinical Medicine

https://ai.nejm.org/doi/pdf/10.1056/AIoa230006
8

 PubMed, UpToDate, 
BMJ Best Practices

aug 2023

https://ai.nejm.org/doi/pdf/10.1056/AIoa2300068
https://ai.nejm.org/doi/pdf/10.1056/AIoa2300068


Almanac—Retrieval-Augmented Language Models for Clinical Medicine

Medical Calculators 
(MedCalc)

MedCalc in Almanac
(embedded in Qdrant)



Clinfo.ai: An Open-Source Retrieval-Augmented Large Language Model 
System for Answering Medical Questions using Scientific Literature

API

GPT3.5

abstracts

rerank 
and filter

feb 2024

https://www.worldscientific.com/doi/abs/10.1142/9789811286421_0002

https://www.worldscientific.com/doi/abs/10.1142/9789811286421_0002


Clinfo.ai: An Open-Source Retrieval-Augmented Large Language Model 
System for Answering Medical Questions using Scientific Literature

Question2Query

https://www.worldscientific.com/doi/abs/10.1142/9789811286421_0002

https://www.worldscientific.com/doi/abs/10.1142/9789811286421_0002


Clinfo.ai: An Open-Source Retrieval-Augmented Large Language Model 
System for Answering Medical Questions using Scientific Literature

https://www.worldscientific.com/doi/abs/10.1142/9789811286421_0002

https://www.worldscientific.com/doi/abs/10.1142/9789811286421_0002


Health-LLM: Personalized Retrieval-Augmented Disease Prediction 
Model

feb 2024

https://arxiv.org/abs/2402.00746

https://arxiv.org/abs/2402.00746


Development of a Liver Disease-Specific Large Language Model Chat 
Interface using Retrieval Augmented Generation

Disease specific!
30 publicly available 

American Association for the 
Study of Liver Diseases 

(AASLD) guidelines

nov 2023

https://www.medrxiv.org/content/10.1101/2023.11.10.23298364v1

https://www.medrxiv.org/content/10.1101/2023.11.10.23298364v1
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• Hybrid search replacing dense search

• Reranker model to rerank and filter retrieved elements

• Variable length embedding models

• Medical embedding model

• Medical embedding model fine-tuned for retrieval

• Single model for embedding and text generation
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Self-RAG: Learning to Retrieve, Generate, and Critique through Self-Reflection

https://arxiv.org/abs/2310.11511

https://arxiv.org/abs/2310.11511
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