Batch normalisation
How | Learned to Stop Worrying and Love the BN

WHAT is Batch Norm

Intuition of BN calculation

e Take a batch, and normalise its activations

1 i
1B — — E T // mini-batch mean
m 4
i=1
m
2 1 . ‘2 7 W L .
og— —) (zi—pus) // mini-batch variance
m '
i=1
-~ I 1 T /“l L; [/ 2
G // normalize
Op TE€

x.= activations of a
neuron on sample i

m = batch size™**

*x%

caveats ahead

The forgotten:

e BN does not JUST subtract mean and divide by STD. It also re-scales the
normalised thing by a set of trainable parameters, a pair for each
activation (neuron). THIS IS DEFAULT IN MOST FRAMEWORKS!

Yi & 7Z; + B = BN, 5(x;) // scale and shift

Why is this done? Shouldn’t be necessary in most cases.
Note: original paper was NOT most cases

WHEN/WHERE is
Batch Norm

When goes BN?

6 madebyollin

I can guarantee that recent code written by Christian [Szegedy, from the BN paper] applies relu
before BN. It is still occasionally a topic of debate, though.

e Dunno?

In my opinion, BN after ReLU makes much more sense - the weight matrix W then looks at mean-
centered data.

From loffe and Szegedy (2015)'s point of view, only use BN in the network structure. Li et al. (2018)
give the statistical and experimental analyses, that there is a variance shift when the practitioners

model.add(Conv2D(32, (3, 3), padding="same", input_shap 3 s
use Dropout before BN. Thus, Li et al. (2018) recommend applying Dropout after all BN layers.

model .add(Activation("relu"))

model .add(BatchNormalization(axis=chanDim)) From loffe and Szegedy (2015)'s point of view, BN is located inside/before the activation function.
model.add(MaxPooling2D(pool_size=(3, 3))) However, Chen et al. (2019) use an IC layer which combines dropout and BN, and Chen et al. (2019)
model.add(Dropout(@.25)) recommends use BN after ReLU.

self.convl = conv3x3(inplanes, planes, stride)
self.bnl = norm_layer(planes)
self.relu = nn.RelLU(inplace=True)

self.conv2 = conv3x3(planes, planes)

When goes BN: Original paper

e BN paper was defined to work on FULLY CONNECTED,

SIGMOID-ACTIVATION networks
e The layer was located before the activation function for a reason: The

trainable parameters were introduced to preserve expressivity:

HR

/

Note that simply normalizing each input of a layer may
change what the layer can represent. For instance. nor- /
malizing the inputs of a sigmoid would constrain them to

un

the linear regime of the nonlinearity. To address this. we
make sure that the transformation inserted in the network
can represent the identity transform. :

~ Original BN paper

In the context of ReLU

e BN then RelLU (or without BN) ->

(@)

output >= 0, obviously, with some (most)
accumulated at 0. If BN learns gamma =1, B
= 0, top-right case. Similar to no BN outs.
Output distribution is obviously non-gaussian
(mean > 0, with a mode at 0).

NOT a truncated gaussian! There’s a point
mass at 0.

e RelLU then BN >

(@)
(@)

output: some shifted function from before
output distribution into next layer should be
‘centered’ to the B learnt by BN

To some, it ‘makes more sense’ because of it
Empirically better-ish? Should be ‘more
expressive’ at the very least? (wrt single
neuron)

Cumulative distribution function of Y = ReLU(X)

X~N(-1,1?)

08

= 06

o

04
02

0.0
X~N(1,1%)

08

= 06

PlY =

04

02

0.0

X ~N(0,12)

X ~N(2,1%)

In the context of ReLU

BN can be integrated into the weights of a layer (doing the same) if no
non-linearity in-between.

e BN before RelLLU

o BN+parameters do not add expressivity wrt no BN, you can achieve the same by integrating
on the weights on the layer before

o BN+parameters add expressivity wrt BN only, without them you always have 0 mean (so
“half” of activations die (not really, it's the mean not the median, but close enough)), but the
bias of neurons can be removed (aggregated in the mean and discarded). Similar reason to
why original paper included them for sigmoid

e BN after ReLU

o BN+parameters do not add expressivity wrt no BN, you can achieve the same by integrating
all BN parameters in all neurons of the next layer; but appears more expressive for the
neuron outputs

o BN+parameters do not add expressivity wrt BN only, for the same reasons as previous point
So it becomes apparent BN is not about expressivity

HOW is Batch Norm
(applied)

In the context of...

e Conv: normalise activations out of a feature:
considering separately each feature: M =
batch_size*H*W of output.

e If you put ReLU after BN (as in the original):
forget biases of layers, they just get removed
in the mean. Just don’t add that parameter, (it
may cause numerical instability).

H, W

m
1 i - s
g — E T // mini-batch mean
m
=1

xi=...+bi=>xi’=xi-...-bi

Other contenders, may reappear later

NN SRR,
TR TR
Z,

Group Norm

iy) w7
MH

NN N

Instance Norm

M'H

TR VR TR
ENENTE IR
AANNN\N\Z
NEPEA SV

Layer Norm

Batch Norm

WHY Batch Norm
(works)

Short answer

e No one quite knows yet. Original hypotheses

have been proven false, new ones are a WIP

o ICS is a thing, the inspiration for BN, but it
seems unrelated by further works

o BN, WeightN, NormProp (not quite for LayerN)
seem to be doing the same: reparametrisation,
and the effect is in the loss landscape mostly

o BN is most likely serendipity

Original Hypothesis Internal Covariate Shift

ICS term: originally in paper Improving predictive inference under covariate
shift by weighting the log-likelihood function (1998-2000)

Reborn in Batch Normalization: Accelerating ... by Reducing Internal
Covariate Shift

When training, gradients update all layers of an NN

Updating weights of layer L changes the distribution of the activations coming
out of it, and informally they say this is why vanishing gradients are a thing
with sigmoids.

At the same time, we update weights of layer L+1, which learn from the now
changed layer L. This is ‘obviously’ bad for optimisation, so we can ‘fix it’ with
Batch Normalization, keeping distribution ‘known’ (mean and std)

Batch Normalization: Accelerating Deep Network Training b y Reducing Internal
Covariate Shift

https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf

ICS explained Il
t = F5(Fi(u,01),07)

0F>(x;,02)

@2(-62——2 50,

2_

W1

2-layer function

Gradient update for 2nd function does
not consider weights of previous
function (besides the output acts)

Updating Theta1 changes the input to
Theta2, so it changes the weights

BN does not ‘unchange’ the input, but
tries to keep a ‘similar distribution’,
which ‘should help’ (no cite/proof of
this, beside one tangentially related)

New paper: How does Batch Norm Help Optimization?

Among many contributions, following are the most interesting:

e BN increases internal covariate shift (opposite of what was said originally!)

e BN + a random perturbation (mean and std != 0 and 1, and changing through
time thus forcing even MORE ICS) improves the same as BN

e \What BN seems to be doing is ‘smooth’ the loss landscape by improving its
Lipschitzness and Beta-smoothness

e Paper also introduces interesting tools for analysing effects of architectural
changes on the loss landscape

How Does Batch Normalization Help Optimization?

https://arxiv.org/abs/1805.11604

Scrutiny of How does BN help Optimization

BN vs Noisy BN

Algorithm 1 “Noisy” BatchNorm

1: % For constants n,,,, Ny, 'm, Tve

£

3: for each layer at time ¢ do

4: at ;j < Batch-normalized activation for unit j and sample i

5.

6 for each j do Create a perturbation generator for each

7: pt ~U(—ny,n,) neuron. Values are 0.5, 1.25 respectively. Each
8 o ~U(1,n,) neuron gets a different mean and STD

9:
10: for each i do Each neuron activation (for each img i) gets
1 for cach.] do perturbed by two random numbers drawn from
f). A P - e .
L2 mi; ~ Ul =Tu, '+ 70) the above generator for its neuron.
13: si i ~N(o,rs)

14: a; ; < 5, ;" Qi+ My Expected large covariance shift.

Training Accuracy

BN vs Noisy BN

100-

o
o

o
o

FN
O

¥
=

= Standard
- Standard + BatchNorm
- Standard + "Noisy" Batchnorm

5k

Steps

10k

15k

Layer #9 Layer #2

Layer #13

Standard Standard + Standard +
BatchNorm "Noisy" BatchNorm

Each stacked histogram is the
‘activation distribution across
timesteps’, ‘closer’ = ‘more steps’

Despite the covariance
shift being enormous
(pink peak
miss-alignment), esp.
on layer 13, training
follows mostly the same
tendency.

Measuring ICS
Gt,i _ VW_(t)E(Wl(t), W(t) ’y(t))

= VoL e o WL W W e W58,).

R

Compare gradient when network is updated ‘up to a layer /" with original gradient

Layer #5 Layer #10

1

2 archs (each with s
and W|thout BN) 5;(31 —— Standard

Cos Angle £-diff.

25 ____ Standard +
£ BatchNorm 0
2 measures (12, cos) -
(a) VGG
Layer #9 Layer #17
BN has more ICS p — sonwa E I‘P——‘mew N——'*"mm 25 FC layers,
(atleaston DLNor 33, __ Sendad+ full batch
VGG in the ‘train’ - 2!
part) 58 ik descent, hell to
° train

(b) DLN

LR =0.1
Training Accuracy (%)

LR = 1e-07
Training Loss

Close up

100

75

50

25

104

10°

) A At « 1

— Standard

Standard +
BatchNorm

- Standard

Standard +
BatchNorm

\

Cos Angle £»-diff.

Cos Angle £,-Diff.

Layer #5

Layer #10

(a) VGG

Layer #9

Layer #17

(g - A A M AAAAAAN '\ r———_""' "‘"MW

1 B [
S AL

(b) DLN

Then WHY
Batch Norm??

Loss landscape, probably |
(+ healthy noise?) (a) ResNet-110, no skip connections (b) DenseNet. 121 layers

Figure 4: The loss surfaces of ResNet-110-noshort and DenseNet for CIFAR-10.

Lipschitzness L is provably lower with Batch Norm

e Recurrent concept appearing on papers talking ‘optimisation speeds’

o L-Lipschitz <-> [f(x,)-f(x,)| < L*|x, - X,

e In our case, x are parameters, f is loss. Loss should change ‘less’ than
weights at all points (factor of L) .

e Means no sharp pit such as below

Source: Gradient clipping original paper f

https://arxiv.org/abs/1211.5063

LOSS
Landscape|

How does BN help Optimization (metrics)

e Loss landscape
Each step, compute losses along gradient
direction, compute variability

e Gradient predictiveness
Each step compute gradients along
gradient direction, compute ‘difference’
e Beta-smoothness
Gradient predictiveness, but weigh each
difference by the distance travelled (the
less distance, the most weight)

Gradient
Predictiveness

Wp

Bonus: custom mathematical proof for BN only
about the loss Lipschitzness (softness)

Loss Landscape

10!

10°

Batch Norm vs no Batch Norm

m Standard 250 Standard
ﬁ [Standard + BatchNorm
c 200
(]
P
-—
Y 150
©
g
a.
— 100
c
Q@
B 50
Lo
G
0
0 5k 10k 15k 0 5k 10k 15k
Steps Steps

(a) loss landscape (b) gradient predictiveness

45 —— Standard
—— Standard + BatchNorm

B-smoothness

0 5k 10k 15k
Steps

(c) “effective” -smoothness

Gradient

*

Similar things that also work? Norm scaling

400

1 H n7i B Standard e Standard + L
Take activations, divide 3 —fon SRl
P c o Standard + Ly
> [}
by LP norm, after that 2
shift mean. (all done < 5
-~
c =
before ReLU) ‘% w—— Standard -== Standard + L; g
"_— 20 = Standard + BatchNorm --- Standard + L.. b
-~ Standard + L,] P
0 5k 10k 15k 0 5k 10k 15k
Steps Steps
(a) (c)
H H B Standard I Standard + L. a5 —— Standard - Standard + L
ArCh IteCtu re VGG-I I ke . B Standard + Batchnorm @ Standard + L: 40 — St::d::d + Batchnorm —— Standard + Li
@ | Standard + L, we Standard + L,
= ﬁ 35
. . g C 30
All methods are similar, g 5
B o
H € 20
different from no-scale 5
—

10

0 5k 10k 15k
Steps Steps
(b) (d)

How Does Batch Normalization Help Optimization?

https://arxiv.org/abs/1805.11604

lest Err.

Weight Norm (top) vs layer norm (bot)

Scale. normal param
weight :orm. .
i i - i i E | —batctr:;:r;—on |
Weight norm (Kingma): weights by L2 norm of weights z e
8 0.05}
Layer norm (Hinton): acts by variance of LAYER
0 L L
0 50 100 150 200

training epochs

Epoch
0.025 T 0.025
0.020 Ao ’ BS128 ke 0.02014},
g o~ . ¢ o N : S S ' v \ oV \l
0.015 - \/AALNENE L W : O A o. T Wiy & 0.015}-....".. "SR\ & VG
' : Y - . : " g : 3 4
o § — BatchNorm bz128 §i : : : — LayerNorm bz4
' ? : : — Baseline bz128 ' BS 4 — Baseline bz4
: : : — LayerNorm bz128 — BatchNorm bz4
0‘005 i ; l 1 1 1 0'005 L l l 1 L 1

0 10 20 30 40 50 60 0 10 20 30 40 50 60

https://arxiv.org/abs/1602.07868
https://arxiv.org/abs/1607.06450

Considerations on similarity

Weight Norm: assuming that activations in layer L-1 are N(0,1), multiplying by a
weight vector W results in activations that are N(O, |[|W]|) [Kingma] (before
multiplying by parameter). So this is preserved for the 1 layer case. Multi-layer?
Since [Kingma] multiplies by a parameter v, we can’t know much about the output.

Layer norm: instead of normalising by output of a neuron, try to keep ‘globally
normal’ by scaling all neurons for each image (separately). Opposed to WN and BN,
it is not a reparametrisation (scaling the weights cannot achieve the same ops to
scaling individual ‘image acts’). Similar to L2 scaling in Feature extraction. Paper
compares itself with BN in 1 traditional problem, marginal improvement.
Recommended for recurrent tasks since BN is inapplicable there.

Norm propagation vs Weight Norm

1

Ji-1)

e Same as with WN, but using “’math™” to deduce expected values of the
mean and std that result; theoretically more stable than BN since no moving
mean/std. Assumes crazy things (whitened input always, no covariance, real
world data is gaussian... and also that data is variance scaled)

e Empirically decent: CIFAR100 wins against BN by about 1-3% depending on
if data augmented (no data augmentation -> 3%)

0; =

ReLU (7"(W"'*x) + ,3.l.) i &
IWillp 2m

Weight Normalisation vs Batch Normalisation

w
lwlls

e BN: w:i=g where ||lwl|g := (W' Sw) 1/2 (S: covar x*x").
S is never computed explicitly, but appears due to activation values.
e WN: Same, but S = Identity (so w'w divisor, norm 2) -> cannot model
correlated values).
Each neuron learns ‘a direction’
A point in the sphere surface
e BN constraints to an S-sphere (ellipsoid), WN on a unit- spher
also illustrates covariances between inputs

WN ->

BN ->

Riemannian approach to batch normalization / Exponential convergence rates

https://arxiv.org/abs/1709.09603
https://arxiv.org/abs/1805.10694

Detach-Norm vs Layer Norm

Is the ‘normalisation’ part important? Or the way the gradient changes?

Detaching the mean/std before application worsens performance

(note these results are in LN, but this may/should apply to BN too)

De-En

Y60

—— DetachNorm
—— LayerNorm-simple

0 10 20 30 40 50
Epoch

Valid Loss

6.5

N
<)

v
wn

o
o

4.5

En-Vi

—— DetachNorm
—— LayerNorm-simple

0.0

2.5

50 7.5 10:0 12:5 aA540 275
Epoch Understanding & Improving Layer Normalisation

https://proceedings.neurips.cc/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf

General idea: what re-parametrisation does

e Easier to optimize if neuron ‘direction’ is decoupled from
‘intensity’

e \What does it mean ‘easier to optimize’'? Different optics
o Smoother loss landscape
o Easier to learn some ‘particular functions’, and harder to

learn others

o Resilience to bad-luck batching

e Other things that improve smoothness? EG: Skip connections,
regularisation (weight decay). Dropout ‘improves smoothness
when looking at mean loss space through time’

Reparametrization visualised

T gH(w R x+w2)/|w

derivative of activation

Recall the step rule (no BN): function
aL do(net;)
dw;; . Z (Z 7101 dnet ;
le L

W, = weight feeding from neuron i (layer L) to j (L+1)

d, = desire tendency of the neuron | (>0 wants increased, <0 decreased)

On complexity on learning functions

How would one learn to ‘shut down neuron j?’: must learn to lower either all w, (to
exactly 0) or most wij(up to -inf).

Hard to guess what ‘we need’ for this, but it's XOR(negative?(w,d,0)) = 1

several steps in a row is not high.

wi] |d] o tendency goes to 0 (Odd number of negatives)
+ + + + n
- + |- - y
: + :: Each depends on tendency of a neuron and output of
PR S y previous layer, probability of managing to do this
n
n
y

What about ‘identity?’ (recall resnets are good for this):
must learn to lower all W, but one. Hard, too.

tendency = - if
different(dj, oi)

Reparametrisation helps: step rule for new params

X.: out after normalisation. y;: out after scaling (dl/dy, as before = 6 / desire)

. r . d¢ net'
or. . . Zﬂl af. . T (5j= (Z w;i0y) * (net;)

Oy 1=1 Oy, = dnet ;
ag e m ag Key: gamma and delta are independent of previous layer
"o Vi 1—1 ayl activations, only of this neuron’s. Shutting it is now easy.

“Independent™ of ‘neuron direction’ in backward pass

X -> gammad&bias -> d

Furthermore: gradient of input before BN (with BN!)

B _ 188 C2@izps) | 9L 1
oxr; OT; B+6 T 5aT 803 m I du m

e Gradient of before BN (so just after weight multiplication, case of BN then
activation function) is different than without BN (obv)

e Gradient now depends on mean and std computed (Mg, 0), which ‘rescales it
and shifts in backward propagation’ (just as activations are in the forward)

e Brings us forth to the previous comment on LN detachnorm: "the derivatives
of the mean and variance are more important than forward normalization
by re-centering and re-scaling backward gradients" (at least in LN)

Batch Normalization: Accelerating Deep Network Training b v Reducing Internal
Covariate Shift Understanding & Improving Layer Normalisation

https://proceedings.neurips.cc/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf
https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf

What about in WN? Does not have ‘gradient shifting’

e Gradient now depends on mean and std computed (U, 0), which ‘rescales it
and shifts in backward propagation’ (just as activations are in the forward) in
the case of BN

e Inthe case of WN, the re-parametrisation is w = g*v/||v|| (Note how gradient
of w is unchanging from not doing WN, it’s just that the gradient needs
‘postprocessing to apply it to the real parameters g & v)

e Hence, previous layer gradients are unchanged by reparametrisation in WN'’s
case, since v weights are independent when w is known.

[Ivl| [Ivl] [v]]
Informally: g increases with how
‘aligned’ is gradient of w with v’s Weiaht
direction, & magnitude of gradient w elght norm

https://arxiv.org/abs/1602.07868

Exponential convergence
rates for Batch

Normalization: The

power of length-direction
decoupling In
non-convex optimization

https://arxiv.org/abs/1805.10694
https://arxiv.org/abs/1805.10694
https://arxiv.org/abs/1805.10694
https://arxiv.org/abs/1805.10694
https://arxiv.org/abs/1805.10694
https://arxiv.org/abs/1805.10694

Reparametrisation on Least Squares Logistic

min (fors(W) 1= Ex 4 [(y - xTv‘v)z]) Least Squares original
weR " (1) Problem (convex) (remember:
(2\9 min (2u W + WTSW) : u, S are mean E(x*y), covar
v E(xx))
u'w Least Squares when

2
lwlls +9) . (12) ‘weight-normalised’. Problem
becomes nonconvex.

Convergence rate is still linear
(fast)

min dAw.q) :=2¢
weRd\ (0} geR (fom(9) g

Exponential convergence rates for Batch Normalization: The power of
length-direction decoupling in non-convex optimization

Learning Half-spaces (W*X > threshold)

On simple log-regression-like problems, path
weights take through the loss. Left: traditional,
right: optimise first ‘direction’ (until convergence:
red line) then ‘scale’ (move on red line).

By row: least squares, logistic, sigmoidal
regression; same problem. Note how right one
always takes the ‘same path’ until the line.

Regardless of ‘row’, weight direction ‘should be the
same always, but on regular GD, it takes different
paths.

Later empirically show this works too if optimising
direction & scale separately

GDNP (normal params)

Learning Half-spaces result

e For S-spheres, there’s proof that weights are optimisable ‘linearly’ with
respect to target loss (L<= eps). For unit spheres (WN), no proof yet.

e Proof relies on data gaussianity (but empirically that doesn’t matter(?))

e Proof relies on separate training direction and scale training (they claim:
mainly to simplify the theoretical analysis)

e Proof does NOT rely on convexity of loss (cause it ain’t, duh)

Method Assumptions Complexity Rate Reference

GD Smoothness O(Tae) Sublinear (Nesterov, 2013))
A= AGD Smoothness O(T,ae""*log(1/€)) Sublinear (Jin et al.,[2017
accelerated AGp Smoothness+convexity — O(Tgae™) Sublinear (Nesterovy, |2013])

GDNP H |Z|. Iél and H O(Tyalog”(1/e)) Linear This paper

Dependencies between layers

— l0SSan 804 — Vufenl
101 == lossgp — Vufeoll
60 4
8 B
40
6 | \
\
\“ 20 A
41
e
2 3 T T T T o- T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
200
—— [|9%fanl (3W2aWs) || 350 4 === [9%fepl(dW20W,) |
1751 19 find (W39 Wa) |+ -~ 9% fapl(aW30W,) |
igh — 187 Fanl (AWsaWs) | ¢ 3001 @ —-= 197 fonl(OWsaWa)r
0% fant (aWsdW)|l s50lB S - [9%fepl(aWeaWy) ¢
125 O3
H \
1 \\
TG 200 \
/ \
! \
75 1 150 1 ! 5
50 4 1007 008 e, ST TS e e e T e e e ———
25 4 P Il ____________________________
501,
/
g = 01
0.0 25 5.0 7.5 10.0 12.5 15.0 17.5 20.0 0.0 2:5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Loss (1) & gradient magnitude (2)

Dependencies between weight
updates (layer {2,3,5,6} wrt layer 4)
(BN left, no BN right). BN reduces
dependencies as training goes

Proves: Given Gaussian inputs —
the optimal direction of a given layer
is independent of all downstream
layers (required if want to prove
fast training without training
direction/scale separately)

“Batch Normalization layers indeed
simplifies the networks curvature
structure in w”

Dependencies between layers

—— lossan 8 — || Viufenl
104 -= lossgp — [Vufeoll
60
8.
40 4
6- \
\
\\\ 20/
4]
o
2- T T T T o- T T T T
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
200
—— 9% fan/(BW20Wa) | 350 1 == [8%fcol(aW20Wa) e
1751 19 find (W39 Wa) |+ -~ 9% fapl(aW30W,) |
igh —— 9% fan (3WsaWs) || 3007 &8 -= 19 fonl(aWsaWa) ¢
1182 fanl (aWsaW,) | ¢ geo) PR - 9% fool(aWeaWs) I
125 1
/
T 200
75 150 //
50 4 1007 008 e, ST TS e e e T e e e ———
B e e
254 504/
/
01 = —— 01
00 25 50 75 100 125 150 175 200 00 25 50 75 100 125 150 175 200

ICS is defined as ‘how gradient
of layer X’ changes when
applying the gradient of the
previous layer(s).

Counterpoint to previous paper,
the ones below shows ‘how
gradient of layer 2/3/5/6° changes
as we move in direction of
gradient of layer 4.

How does Batch norm
help
GENERALISATION?

The idea Is within original paper

3.4 Batch Normalization regularizes the
model

When training with Batch Normalization. a tramning ex-
ample 1s seen i conjunction with other examples in the
mini-batch, and the traming network no longer produc-
ing deterministic values for a given traming example. In
our experiments, we found this effect to be advantageous
to the generalization of the network. Whereas Dropout
(Srivastava et al., 2014) is typically used to reduce over-
fitting. in a batch-normalized network we found that it can
be either removed or reduced in strength |

Healthy noise

Assume manifold such as right

e Adding noise may enhance the size of data and
improve generalisation (data augmentation)

e Adding noise may ‘join’ parts of the manifold
(different manifold than real one), changing

the topology, changing what must be learnt, so
how much noise is good?

e Not adding noise permits orange stragglers in
the center to be overfitted more easily

How much Noise does BN cause?

e Lety, obe the ‘true’ mean and std of a neuron computed on the dataset

e Lety’, o’ be the mean and std of a neuron computed on a batch of n elements
(pre-normalisation). What is the ‘expected noise?’

e The variance of the estimator p’ Var(u’) = o?/n. As n increases (larger
batches) it is less ‘wrong’, proportional to variance

e The variance of the estimator sigma’ depends on the kurtosis (4th moment
u,) and o*: (also tends to 0 with n -> infinity) Var(s?) = £ - ‘:((:__f’))-

e ‘Running statistics’ slowly reduce the noise (increase n)

e Summary: mean and variance estimators used have a ‘measurable’
noise, depends on BatchSize (n) (layernorm plot confirms it)

Activation noise

e Small perturbations in an activation can have a similar effect to input
perturbations
e But now, activation correlation may mean that noise is ‘discardable’ if two

other neurons compute something similar
o More formally, it can learn linear combinations of neurons to cancel added/multiplied noise

e Small perturbation in most neurons in general could work the same, achieving
de-overfitting impact in the loss landscape (reduction of sharp minima through
a better approximation of p(X)

e Another example: Dropout

Hypothesis: BN is length-direction decoupling + Healthy noise

Activation noise

e Only one example seen of this, in Parametric Noise Injection

e Paper introduces noise as a way to reduce adversarial
effectivity, to a very impactful degree, at the cost of accuracy

e Paper does not show noise in training is effective for
generalisation, but it does show it is effective for adversarial
attacks

e |Itis possible both effects are related

Summary

BN implicitly reparametrises the
network, like WN or NP

BN reparametrises differently than
WN, taking covariances into account
Reparametrisation causes length
and direction of weights to be
decoupled, provably improving
convergence speeds

The important part is the scaling, not
the biases

When is BN a good idea? It's pretty
much free, so wherever you want to
put it

Should | use the additional
parameters? In most cases they
don’t add expressivity, but they help
with optimising, so yes

Before or after activation function? If
before, make sure to put the
additional parameters. Do what you
want otherwise.

Parametric Noise Injection

Idea: use noise like this to prevent adversarial attacks.

How much? Let network decide: add a parameter (a, one for each layer) which we
multiply by gaussian noise (std proportional-ish to the activation std), and add to
activations. Noise being 0-centered means that it is random whether a. increases
or decreases in each activation. With momentum, it tends to O.

They add ‘robust optimisation’, adding noise to input in a specific way, so that a,
does not converge to 0 (beyond scope of this presentation)

Test with PNI Test without PNI
Clean PGD FGSM Clean PGD FGSM
Vanilla adv. train = - - 83.84 39.14+£0.05 46.55
PNI-W 84.804+0.11 45.94+0.11 54.48+0.44 8548 31.45+0.07 42.55
PNI-I 85.10+0.08 43.25+0.16 50.78+0.16 84.82 34.87+0.05 44.07
PNI-A-a 85.2240.18 43.83+0.10 51.41+£0.08 8520 33.93+0.05 44.32
PNI-A-b 84.66+0.16 43.63+0.20 51.26+0.09 83.97 33.53+0.05 43.37
PNI-W+A-a 85.124+0.10 43.57+0.12 51.15+0.21 84.88 33.23+0.05 43.59

PNI-W+A-b 84.33+£0.11 43.80£0.19 51.14+0.07 84.42 33.30+0.05 43.43

V:Noise in loss?

What if we train with a similar approach: get noise and add it/multiply it
by activations. Noise is pondered by some weights gamma/beta (each
layer, neuron, or global), which in the loss are set to maximise (with a
hyperparam on how much we care).

NN should be BN'd or isomorphised before to ensure activations
cannot grow too much (else noise optimisation is trivial)

Effect on adversarial attacks? Potentially interesting.

