
Batch normalisation
How I Learned to Stop Worrying and Love the BN

WHAT is Batch Norm

Intuition of BN calculation

● Take a batch, and normalise its activations

xi = activations of a
neuron on sample i

m = batch size***

*** caveats ahead

The forgotten:

● BN does not JUST subtract mean and divide by STD. It also re-scales the
normalised thing by a set of trainable parameters, a pair for each
activation (neuron). THIS IS DEFAULT IN MOST FRAMEWORKS!

Why is this done? Shouldn’t be necessary in most cases.
Note: original paper was NOT most cases

WHEN/WHERE is
Batch Norm

When goes BN?

● Dunno?

This is false because of training parameters 0?

When goes BN: Original paper

● BN paper was defined to work on FULLY CONNECTED,
SIGMOID-ACTIVATION networks

● The layer was located before the activation function for a reason: The
trainable parameters were introduced to preserve expressivity:

~ Original BN paper

In the context of ReLU

● BN then ReLU (or without BN) ->
○ output >= 0, obviously, with some (most)

accumulated at 0. If BN learns gamma = 1, B
= 0, top-right case. Similar to no BN outs.

○ Output distribution is obviously non-gaussian
(mean > 0, with a mode at 0).

○ NOT a truncated gaussian! There’s a point
mass at 0.

● ReLU then BN ->
○ output: some shifted function from before
○ output distribution into next layer should be

‘centered’ to the B learnt by BN
○ To some, it ‘makes more sense’ because of it
○ Empirically better-ish? Should be ‘more

expressive’ at the very least? (wrt single
neuron)

In the context of ReLU

BN can be integrated into the weights of a layer (doing the same) if no
non-linearity in-between.

● BN before ReLU
○ BN+parameters do not add expressivity wrt no BN, you can achieve the same by integrating

on the weights on the layer before
○ BN+parameters add expressivity wrt BN only, without them you always have 0 mean (so

‘’half’’ of activations die (not really, it’s the mean not the median, but close enough)), but the
bias of neurons can be removed (aggregated in the mean and discarded). Similar reason to
why original paper included them for sigmoid

● BN after ReLU
○ BN+parameters do not add expressivity wrt no BN, you can achieve the same by integrating

all BN parameters in all neurons of the next layer; but appears more expressive for the
neuron outputs

○ BN+parameters do not add expressivity wrt BN only, for the same reasons as previous point

So it becomes apparent BN is not about expressivity

HOW is Batch Norm
(applied)

In the context of…

● Conv: normalise activations out of a feature:
considering separately each feature: M =
batch_size*H*W of output.

● If you put ReLU after BN (as in the original):
forget biases of layers, they just get removed
in the mean. Just don’t add that parameter, (it
may cause numerical instability).

xi = … + bi => xi’ = xi - … - bi

Other contenders, may reappear later

WHY Batch Norm
(works)

Short answer

● No one quite knows yet. Original hypotheses
have been proven false, new ones are a WIP
○ ICS is a thing, the inspiration for BN, but it

seems unrelated by further works
○ BN, WeightN, NormProp (not quite for LayerN)

seem to be doing the same: reparametrisation,
and the effect is in the loss landscape mostly

○ BN is most likely serendipity

Original Hypothesis Internal Covariate Shift
● ICS term: originally in paper Improving predictive inference under covariate

shift by weighting the log-likelihood function (1998-2000)
● Reborn in Batch Normalization: Accelerating … by Reducing Internal

Covariate Shift
● When training, gradients update all layers of an NN
● Updating weights of layer L changes the distribution of the activations coming

out of it, and informally they say this is why vanishing gradients are a thing
with sigmoids.

● At the same time, we update weights of layer L+1, which learn from the now
changed layer L. This is ‘obviously’ bad for optimisation, so we can ‘fix it’ with
Batch Normalization, keeping distribution ‘known’ (mean and std)

Batch Normalization: Accelerating Deep Network Training b y Reducing Internal
Covariate Shift

https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf

ICS explained II

2-layer function

Gradient update for 2nd function does
not consider weights of previous
function (besides the output acts)

Updating Theta1 changes the input to
Theta2, so it changes the weights

BN does not ‘unchange’ the input, but
tries to keep a ‘similar distribution’,
which ‘should help’ (no cite/proof of
this, beside one tangentially related)

W1

W2

New paper: How does Batch Norm Help Optimization?

Among many contributions, following are the most interesting:

● BN increases internal covariate shift (opposite of what was said originally!)
● BN + a random perturbation (mean and std != 0 and 1, and changing through

time thus forcing even MORE ICS) improves the same as BN
● What BN seems to be doing is ‘smooth’ the loss landscape by improving its

Lipschitzness and Beta-smoothness
● Paper also introduces interesting tools for analysing effects of architectural

changes on the loss landscape

How Does Batch Normalization Help Optimization?

https://arxiv.org/abs/1805.11604

Scrutiny of How does BN help Optimization

BN vs Noisy BN

Create a perturbation generator for each
neuron. Values are 0.5, 1.25 respectively. Each
neuron gets a different mean and STD

Each neuron activation (for each img i) gets
perturbed by two random numbers drawn from
the above generator for its neuron.

Expected large covariance shift.

BN vs Noisy BN

Despite the covariance
shift being enormous
(pink peak
miss-alignment), esp.
on layer 13, training
follows mostly the same
tendency.

Each stacked histogram is the
‘activation distribution across
timesteps’, ‘closer’ = ‘more steps’

Measuring ICS

Compare gradient when network is updated ‘up to a layer i’ with original gradient

2 archs (each with
and without BN)
2 measures (l2, cos)

BN has more ICS
(at least on DLN or
VGG in the ‘train’
part)

25 FC layers,
full batch
descent, hell to
train

Close up

Then WHY
Batch Norm?
Loss landscape, probably

(+ healthy noise?)

Lipschitzness L is provably lower with Batch Norm

● Recurrent concept appearing on papers talking ‘optimisation speeds’
● L-Lipschitz <-> |f(x1)-f(x2)| < L*|x1 - x2|
● In our case, x are parameters, f is loss. Loss should change ‘less’ than

weights at all points (factor of L)
● Means no sharp pit such as below

Source: Gradient clipping original paper

https://arxiv.org/abs/1211.5063

How does BN help Optimization (metrics)

● Loss landscape
Each step, compute losses along gradient
direction, compute variability

● Gradient predictiveness
Each step compute gradients along
gradient direction, compute ‘difference’

● Beta-smoothness
Gradient predictiveness, but weigh each
difference by the distance travelled (the
less distance, the most weight)

Bonus: custom mathematical proof for BN only
about the loss Lipschitzness (softness)

Batch Norm vs no Batch Norm

*

Similar things that also work? Norm scaling

Take activations, divide
by LP norm, after that
shift mean. (all done
before ReLU)

Architecture VGG-like.

All methods are similar,
different from no-scale

How Does Batch Normalization Help Optimization?

https://arxiv.org/abs/1805.11604

Scale:

Weight norm (Kingma): weights by L2 norm of weights

Layer norm (Hinton): acts by variance of LAYER

Weight Norm (top) vs layer norm (bot)

BS 128

BS 4

https://arxiv.org/abs/1602.07868
https://arxiv.org/abs/1607.06450

Considerations on similarity

Weight Norm: assuming that activations in layer L-1 are N(0,1), multiplying by a
weight vector W results in activations that are N(0, ||W||) [Kingma] (before
multiplying by parameter). So this is preserved for the 1 layer case. Multi-layer?
Since [Kingma] multiplies by a parameter v, we can’t know much about the output.

Layer norm: instead of normalising by output of a neuron, try to keep ‘globally
normal’ by scaling all neurons for each image (separately). Opposed to WN and BN,
it is not a reparametrisation (scaling the weights cannot achieve the same ops to
scaling individual ‘image acts’). Similar to L2 scaling in Feature extraction. Paper
compares itself with BN in 1 traditional problem, marginal improvement.
Recommended for recurrent tasks since BN is inapplicable there.

Norm propagation vs Weight Norm

● Same as with WN, but using “””math””” to deduce expected values of the
mean and std that result; theoretically more stable than BN since no moving
mean/std. Assumes crazy things (whitened input always, no covariance, real
world data is gaussian… and also that data is variance scaled)

● Empirically decent: CIFAR100 wins against BN by about 1-3% depending on
if data augmented (no data augmentation -> 3%)

Weight Normalisation vs Batch Normalisation

● BN: where (S: covar x*xT).

S is never computed explicitly, but appears due to activation values.
● WN: Same, but S = Identity (so wTw divisor, norm 2) -> cannot model

correlated values).
Each neuron learns ‘a direction’
A point in the sphere surface

● BN constraints to an S-sphere (ellipsoid), WN on a unit-sphere. Why? BN
also illustrates covariances between inputs

Riemannian approach to batch normalization / Exponential convergence rates

WN ->

BN ->

https://arxiv.org/abs/1709.09603
https://arxiv.org/abs/1805.10694

Detach-Norm vs Layer Norm

Is the ‘normalisation’ part important? Or the way the gradient changes?

Detaching the mean/std before application worsens performance

(note these results are in LN, but this may/should apply to BN too)

Understanding & Improving Layer Normalisation

https://proceedings.neurips.cc/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf

General idea: what re-parametrisation does

● Easier to optimize if neuron ‘direction’ is decoupled from
‘intensity’

● What does it mean ‘easier to optimize’? Different optics
○ Smoother loss landscape
○ Easier to learn some ‘particular functions’, and harder to

learn others
○ Resilience to bad-luck batching

● Other things that improve smoothness? EG: Skip connections,
regularisation (weight decay). Dropout ‘improves smoothness
when looking at mean loss space through time’

Reparametrization visualised

w1

w2

w1

w2

g
u = w1*x+w2

u =
g*(w1*x+w2)/|w|

Recall the step rule (no BN):

wij = weight feeding from neuron i (layer L) to j (L+1)

dl = desire tendency of the neuron l (>0 wants increased, <0 decreased)

derivative of activation
function

OI WIJ dJ

dl

WJL

On complexity on learning functions
How would one learn to ‘shut down neuron j?’: must learn to lower either all wjl (to
exactly 0) or most wij(up to -inf).
Hard to guess what ‘we need’ for this, but it’s XOR(negative?(w,d,o)) = 1

(Odd number of negatives)

Each depends on tendency of a neuron and output of
previous layer, probability of managing to do this
several steps in a row is not high.

What about ‘identity?’ (recall resnets are good for this):
must learn to lower all wij but one. Hard, too.

tendency = - if
different(dj, oi)

Reparametrisation helps: step rule for new params

X̂i: out after normalisation. yi: out after scaling (dl/dyi as before = 𝛿 / desire)

Key: gamma and delta are independent of previous layer
activations, only of this neuron’s. Shutting it is now easy.
“”Independent”” of ‘neuron direction’ in backward pass

x -> gamma&bias -> d

𝛿j=

Furthermore: gradient of input before BN (with BN!)

● Gradient of before BN (so just after weight multiplication, case of BN then
activation function) is different than without BN (obv)

● Gradient now depends on mean and std computed (μB, σB), which ‘rescales it
and shifts in backward propagation’ (just as activations are in the forward)

● Brings us forth to the previous comment on LN detachnorm: "the derivatives
of the mean and variance are more important than forward normalization
by re-centering and re-scaling backward gradients" (at least in LN)

Understanding & Improving Layer Normalisation
Batch Normalization: Accelerating Deep Network Training b y Reducing Internal
Covariate Shift

https://proceedings.neurips.cc/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf
https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf

What about in WN? Does not have ‘gradient shifting’
● Gradient now depends on mean and std computed (μB, σB), which ‘rescales it

and shifts in backward propagation’ (just as activations are in the forward) in
the case of BN

● In the case of WN, the re-parametrisation is w = g*v/||v|| (Note how gradient
of w is unchanging from not doing WN, it’s just that the gradient needs
‘postprocessing to apply it to the real parameters g & v)

● Hence, previous layer gradients are unchanged by reparametrisation in WN’s
case, since v weights are independent when w is known.

Weight norm
Informally: g increases with how
‘aligned’ is gradient of w with v’s
direction, & magnitude of gradient w

https://arxiv.org/abs/1602.07868

Exponential convergence
rates for Batch
Normalization: The
power of length-direction
decoupling in
non-convex optimization

https://arxiv.org/abs/1805.10694
https://arxiv.org/abs/1805.10694
https://arxiv.org/abs/1805.10694
https://arxiv.org/abs/1805.10694
https://arxiv.org/abs/1805.10694
https://arxiv.org/abs/1805.10694

Reparametrisation on Least Squares Logistic

Least Squares original
problem (convex) (remember:
u, S are mean E(x*y), covar
E(xxt))

Least Squares when
‘weight-normalised’. Problem
becomes nonconvex.
Convergence rate is still linear
(fast)

Exponential convergence rates for Batch Normalization: The power of
length-direction decoupling in non-convex optimization

Learning Half-spaces (W*X > threshold)

On simple log-regression-like problems, path
weights take through the loss. Left: traditional,
right: optimise first ‘direction’ (until convergence:
red line) then ‘scale’ (move on red line).

By row: least squares, logistic, sigmoidal
regression; same problem. Note how right one
always takes the ‘same path’ until the line.

Regardless of ‘row’, weight direction ‘should be the
same always, but on regular GD, it takes different
paths.

Later empirically show this works too if optimising
direction & scale separately

GD GDNP (normal params)

Learning Half-spaces result

● For S-spheres, there’s proof that weights are optimisable ‘linearly’ with
respect to target loss (L<= eps). For unit spheres (WN), no proof yet.

● Proof relies on data gaussianity (but empirically that doesn’t matter(?))
● Proof relies on separate training direction and scale training (they claim:

mainly to simplify the theoretical analysis)
● Proof does NOT rely on convexity of loss (cause it ain’t, duh)

A =
accelerated

Dependencies between layers Loss (1) & gradient magnitude (2)

Dependencies between weight
updates (layer {2,3,5,6} wrt layer 4)
(BN left, no BN right). BN reduces
dependencies as training goes

Proves: Given Gaussian inputs –
the optimal direction of a given layer
is independent of all downstream
layers (required if want to prove
fast training without training
direction/scale separately)

“Batch Normalization layers indeed
simplifies the networks curvature
structure in w”

Dependencies between layers ICS is defined as ‘how gradient
of layer X’ changes when
applying the gradient of the
previous layer(s).

Counterpoint to previous paper,
the ones below shows ‘how
gradient of layer 2/3/5/6’ changes
as we move in direction of
gradient of layer 4.

How does Batch norm
help
GENERALISATION?

The idea is within original paper

Healthy noise

Assume manifold such as right

● Adding noise may enhance the size of data and
improve generalisation (data augmentation)

● Adding noise may ‘join’ parts of the manifold
(different manifold than real one), changing
the topology, changing what must be learnt, so
how much noise is good?

● Not adding noise permits orange stragglers in
the center to be overfitted more easily

How much Noise does BN cause?

● Let μ, σ be the ‘true’ mean and std of a neuron computed on the dataset
● Let μ’, σ’ be the mean and std of a neuron computed on a batch of n elements

(pre-normalisation). What is the ‘expected noise?’
● The variance of the estimator μ’ Var(μ’) = σ2/n. As n increases (larger

batches) it is less ‘wrong’, proportional to variance
● The variance of the estimator sigma’ depends on the kurtosis (4th moment

μ4) and σ4; (also tends to 0 with n -> infinity)
● ‘Running statistics’ slowly reduce the noise (increase n)
● Summary: mean and variance estimators used have a ‘measurable’

noise, depends on BatchSize (n) (layernorm plot confirms it)

Activation noise

● Small perturbations in an activation can have a similar effect to input
perturbations

● But now, activation correlation may mean that noise is ‘discardable’ if two
other neurons compute something similar

○ More formally, it can learn linear combinations of neurons to cancel added/multiplied noise
● Small perturbation in most neurons in general could work the same, achieving

de-overfitting impact in the loss landscape (reduction of sharp minima through
a better approximation of p(X)

● Another example: Dropout

Hypothesis: BN is length-direction decoupling + Healthy noise

Activation noise

● Only one example seen of this, in Parametric Noise Injection
● Paper introduces noise as a way to reduce adversarial

effectivity, to a very impactful degree, at the cost of accuracy
● Paper does not show noise in training is effective for

generalisation, but it does show it is effective for adversarial
attacks

● It is possible both effects are related

Summary

● BN implicitly reparametrises the
network, like WN or NP

● BN reparametrises differently than
WN, taking covariances into account

● Reparametrisation causes length
and direction of weights to be
decoupled, provably improving
convergence speeds

● The important part is the scaling, not
the biases

● When is BN a good idea? It’s pretty
much free, so wherever you want to
put it

● Should I use the additional
parameters? In most cases they
don’t add expressivity, but they help
with optimising, so yes

● Before or after activation function? If
before, make sure to put the
additional parameters. Do what you
want otherwise.

Parametric Noise Injection
Idea: use noise like this to prevent adversarial attacks.

How much? Let network decide: add a parameter (ai, one for each layer) which we
multiply by gaussian noise (std proportional-ish to the activation std), and add to
activations. Noise being 0-centered means that it is random whether ai increases
or decreases in each activation. With momentum, it tends to 0.

They add ‘robust optimisation’, adding noise to input in a specific way, so that ai
does not converge to 0 (beyond scope of this presentation)

V:Noise in loss?

What if we train with a similar approach: get noise and add it/multiply it
by activations. Noise is pondered by some weights gamma/beta (each
layer, neuron, or global), which in the loss are set to maximise (with a
hyperparam on how much we care).

NN should be BN’d or isomorphised before to ensure activations
cannot grow too much (else noise optimisation is trivial)

Effect on adversarial attacks? Potentially interesting.

