
Batch normalisation
How I Learned to Stop Worrying and Love the BN



WHAT is Batch Norm



Intuition of BN calculation

● Take a batch, and normalise its activations

xi = activations of a 
neuron on sample i

m = batch size***

*** caveats ahead



The forgotten:

●  BN does not JUST subtract mean and divide by STD. It also re-scales the 
normalised thing by a set of trainable parameters, a pair for each 
activation (neuron). THIS IS DEFAULT IN MOST FRAMEWORKS!

Why is this done? Shouldn’t be necessary in most cases. 
Note: original paper was NOT most cases



WHEN/WHERE is 
Batch Norm



When goes BN?

● Dunno?

This is false because of training parameters 0?



When goes BN: Original paper

● BN paper was defined to work on FULLY CONNECTED, 
SIGMOID-ACTIVATION networks

● The layer was located before the activation function for a reason: The 
trainable parameters were introduced to preserve expressivity:

~ Original BN paper



In the context of ReLU

● BN then ReLU (or without BN) ->
○ output >= 0, obviously, with some (most) 

accumulated at 0. If BN learns gamma = 1, B 
= 0, top-right case. Similar to no BN outs.

○ Output distribution is obviously non-gaussian 
(mean > 0, with a mode at 0).

○ NOT a truncated gaussian! There’s a point 
mass at 0.

● ReLU then BN ->
○ output: some shifted function from before
○ output distribution into next layer should be 

‘centered’ to the B learnt by BN
○ To some, it ‘makes more sense’ because of it
○ Empirically better-ish? Should be ‘more 

expressive’ at the very least? (wrt single 
neuron)



In the context of ReLU

BN can be integrated into the weights of a layer (doing the same) if no 
non-linearity in-between.

● BN before ReLU
○ BN+parameters do not add expressivity wrt no BN, you can achieve the same by integrating 

on the weights on the layer before
○ BN+parameters add expressivity wrt BN only, without them you always have 0 mean (so 

‘’half’’ of activations die (not really, it’s the mean not the median, but close enough)), but the 
bias of neurons can be removed (aggregated in the mean and discarded). Similar reason to 
why original paper included them for sigmoid

● BN after ReLU
○ BN+parameters do not add expressivity wrt no BN, you can achieve the same by integrating 

all BN parameters in all neurons of the next layer; but appears more expressive for the 
neuron outputs

○ BN+parameters do not add expressivity wrt BN only, for the same reasons as previous point

So it becomes apparent BN is not about expressivity



HOW is Batch Norm
(applied)



In the context of…

● Conv: normalise activations out of a feature:
considering separately each feature: M = 
batch_size*H*W of output.

● If you put ReLU after BN (as in the original): 
forget biases of layers, they just get removed 
in the mean. Just don’t add that parameter, (it 
may cause numerical instability).

xi = … + bi => xi’ = xi - … - bi



Other contenders, may reappear later



WHY Batch Norm
(works)



Short answer

● No one quite knows yet. Original hypotheses 
have been proven false, new ones are a WIP
○ ICS is a thing, the inspiration for BN, but it 

seems unrelated by further works
○ BN, WeightN, NormProp (not quite for LayerN) 

seem to be doing the same: reparametrisation, 
and the effect is in the loss landscape mostly

○ BN is most likely serendipity



Original Hypothesis Internal Covariate Shift
● ICS term: originally in paper Improving predictive inference under covariate 

shift by weighting the log-likelihood function (1998-2000)
● Reborn in Batch Normalization: Accelerating … by Reducing Internal 

Covariate Shift
● When training, gradients update all layers of an NN
● Updating weights of layer L changes the distribution of the activations coming 

out of it, and informally they say this is why vanishing gradients are a thing 
with sigmoids.

● At the same time, we update weights of layer L+1, which learn from the now 
changed layer L. This is ‘obviously’ bad for optimisation, so we can ‘fix it’ with 
Batch Normalization, keeping distribution ‘known’ (mean and std)

Batch Normalization: Accelerating Deep Network Training b y Reducing Internal 
Covariate Shift

https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf


ICS explained II

2-layer function

Gradient update for 2nd function does 
not consider weights of previous 
function (besides the output acts)

Updating Theta1 changes the input to 
Theta2, so it changes the weights

BN does not ‘unchange’ the input, but 
tries to keep a ‘similar distribution’, 
which ‘should help’ (no cite/proof of 
this, beside one tangentially related)

W1

W2



New paper: How does Batch Norm Help Optimization?

Among many contributions, following are the most interesting:

● BN increases internal covariate shift (opposite of what was said originally!)
● BN + a random perturbation (mean and std != 0 and 1, and changing through 

time thus forcing even MORE ICS) improves the same as BN
● What BN seems to be doing is ‘smooth’ the loss landscape by improving its 

Lipschitzness and Beta-smoothness
● Paper also introduces interesting tools for analysing effects of architectural 

changes on the loss landscape

How Does Batch Normalization Help Optimization?

https://arxiv.org/abs/1805.11604


Scrutiny of How does BN help Optimization



BN vs Noisy BN

Create a perturbation generator for each 
neuron. Values are 0.5, 1.25 respectively. Each 
neuron gets a different mean and STD

Each neuron activation (for each img i) gets 
perturbed by two random numbers drawn from 
the above generator for its neuron.

Expected large covariance shift.



BN vs Noisy BN

Despite the covariance 
shift being enormous 
(pink peak 
miss-alignment), esp. 
on layer 13, training 
follows mostly the same 
tendency.

Each stacked histogram is the 
‘activation distribution across 
timesteps’, ‘closer’ = ‘more steps’



Measuring ICS

Compare gradient when network is updated ‘up to a layer i’ with original gradient

2 archs (each with 
and without BN)
2 measures (l2, cos)

BN has more ICS 
(at least on DLN or 
VGG in the ‘train’ 
part)

25 FC layers, 
full batch 
descent, hell to 
train



Close up



Then WHY 
Batch Norm?
Loss landscape, probably

(+ healthy noise?)



Lipschitzness L is provably lower with Batch Norm

● Recurrent concept appearing on papers talking ‘optimisation speeds’
● L-Lipschitz <-> |f(x1)-f(x2)| < L*|x1 - x2|
● In our case, x are parameters, f is loss. Loss should change ‘less’ than 

weights at all points (factor of L)
● Means no sharp pit such as below

Source: Gradient clipping original paper

https://arxiv.org/abs/1211.5063


How does BN help Optimization (metrics)

● Loss landscape
Each step, compute losses along gradient 
direction, compute variability

● Gradient predictiveness
Each step compute gradients along 
gradient direction, compute ‘difference’

● Beta-smoothness
Gradient predictiveness, but weigh each 
difference by the distance travelled (the 
less distance, the most weight)

Bonus: custom mathematical proof for BN only 
about the loss Lipschitzness (softness)



Batch Norm vs no Batch Norm

*



Similar things that also work? Norm scaling

Take activations, divide 
by LP norm, after that 
shift mean. (all done 
before ReLU)

Architecture VGG-like.

All methods are similar, 
different from no-scale

How Does Batch Normalization Help Optimization?

https://arxiv.org/abs/1805.11604


Scale:

Weight norm (Kingma): weights by L2 norm of weights

Layer norm (Hinton): acts by variance of LAYER

Weight Norm (top) vs layer norm (bot)

BS 128

BS 4

https://arxiv.org/abs/1602.07868
https://arxiv.org/abs/1607.06450


Considerations on similarity

Weight Norm: assuming that activations in layer L-1 are N(0,1), multiplying by a 
weight vector W results in activations that are N(0, ||W||)  [Kingma] (before 
multiplying by parameter). So this is preserved for the 1 layer case. Multi-layer? 
Since [Kingma] multiplies by a parameter v, we can’t know much about the output.

Layer norm: instead of normalising by output of a neuron, try to keep ‘globally 
normal’ by scaling all neurons for each image (separately). Opposed to WN and BN, 
it is not a reparametrisation (scaling the weights cannot achieve the same ops to 
scaling individual ‘image acts’). Similar to L2 scaling in Feature extraction. Paper 
compares itself with BN in 1 traditional problem, marginal improvement. 
Recommended for recurrent tasks since BN is inapplicable there.



Norm propagation vs Weight Norm

● Same as with WN, but using “””math””” to deduce expected values of the 
mean and std that result; theoretically more stable than BN since no moving 
mean/std. Assumes crazy things (whitened input always, no covariance, real 
world data is gaussian… and also that data is variance scaled)

● Empirically decent: CIFAR100 wins against BN by about 1-3% depending on 
if data augmented (no data augmentation -> 3%)



Weight Normalisation vs Batch Normalisation

● BN: where (S: covar x*xT). 

S is never computed explicitly, but appears due to activation values.
● WN: Same, but S = Identity (so wTw divisor, norm 2) ->  cannot model 

correlated values).
Each neuron learns ‘a direction’
A point in the sphere surface

● BN constraints to an S-sphere (ellipsoid), WN on a unit-sphere. Why? BN 
also illustrates covariances between inputs

Riemannian approach to batch normalization / Exponential convergence rates

WN ->

BN ->

https://arxiv.org/abs/1709.09603
https://arxiv.org/abs/1805.10694


Detach-Norm vs Layer Norm

Is the ‘normalisation’ part important? Or the way the gradient changes?

Detaching the mean/std before application worsens performance

(note these results are in LN, but this may/should apply to BN too)

Understanding & Improving Layer Normalisation

https://proceedings.neurips.cc/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf


General idea: what re-parametrisation does

● Easier to optimize if neuron ‘direction’ is decoupled from 
‘intensity’

● What does it mean ‘easier to optimize’? Different optics
○ Smoother loss landscape
○ Easier to learn some ‘particular functions’, and harder to 

learn others
○ Resilience to bad-luck batching

● Other things that improve smoothness? EG: Skip connections, 
regularisation (weight decay). Dropout ‘improves smoothness 
when looking at mean loss space through time’



Reparametrization visualised

w1

w2

w1

w2

g
u = w1*x+w2

u = 
g*(w1*x+w2)/|w|



Recall the step rule (no BN):

wij = weight feeding from neuron i (layer L) to j (L+1)

dl = desire tendency of the neuron l (>0 wants increased, <0 decreased)

derivative of activation 
function

OI WIJ dJ

dl

WJL



On complexity on learning functions
How would one learn to ‘shut down neuron j?’: must learn to lower either all wjl (to 
exactly 0) or most wij(up to -inf). 
Hard to guess what ‘we need’ for this, but it’s XOR(negative?(w,d,o)) = 1

(Odd number of negatives)

Each depends on tendency of a neuron and output of 
previous layer, probability of managing to do this 
several steps in a row is not high.

What about ‘identity?’ (recall resnets are good for this): 
must learn to lower all wij but one. Hard, too.

tendency = - if 
different(dj, oi)



Reparametrisation helps: step rule for new params

X̂i: out after normalisation. yi: out after scaling (dl/dyi as before = 𝛿 / desire)

Key: gamma and delta are independent of previous layer 
activations, only of this neuron’s. Shutting it is now easy.
“”Independent”” of ‘neuron direction’ in backward pass

x -> gamma&bias -> d

𝛿j=



Furthermore: gradient of input before BN (with BN!)

● Gradient of before BN (so just after weight multiplication, case of BN then 
activation function) is different than without BN (obv)

● Gradient now depends on mean and std computed (μB, σB), which ‘rescales it 
and shifts in backward propagation’ (just as activations are in the forward)

● Brings us forth to the previous comment on LN detachnorm: "the derivatives 
of the mean and variance are more important than forward normalization 
by re-centering and re-scaling backward gradients" (at least in LN)

Understanding & Improving Layer Normalisation
Batch Normalization: Accelerating Deep Network Training b y Reducing Internal 
Covariate Shift

https://proceedings.neurips.cc/paper/2019/file/2f4fe03d77724a7217006e5d16728874-Paper.pdf
https://arxiv.org/pdf/1502.03167.pdf
https://arxiv.org/pdf/1502.03167.pdf


What about in WN? Does not have ‘gradient shifting’
● Gradient now depends on mean and std computed (μB, σB), which ‘rescales it 

and shifts in backward propagation’ (just as activations are in the forward) in 
the case of BN

● In the case of WN, the re-parametrisation is w = g*v/||v|| (Note how gradient 
of w is unchanging from not doing WN, it’s just that the gradient needs 
‘postprocessing to apply it to the real parameters g & v)

● Hence, previous layer gradients are unchanged by reparametrisation in WN’s 
case, since v weights are independent when w is known.

Weight norm 
Informally: g increases with how 
‘aligned’ is gradient of w with v’s 
direction, & magnitude of gradient w

https://arxiv.org/abs/1602.07868


Exponential convergence 
rates for Batch 
Normalization: The 
power of length-direction 
decoupling in 
non-convex optimization

https://arxiv.org/abs/1805.10694
https://arxiv.org/abs/1805.10694
https://arxiv.org/abs/1805.10694
https://arxiv.org/abs/1805.10694
https://arxiv.org/abs/1805.10694
https://arxiv.org/abs/1805.10694


Reparametrisation on Least Squares Logistic

Least Squares original 
problem (convex) (remember: 
u, S are mean E(x*y), covar 
E(xxt))

Least Squares when 
‘weight-normalised’. Problem 
becomes nonconvex. 
Convergence rate is still linear 
(fast)

Exponential convergence rates for Batch Normalization: The power of 
length-direction decoupling in non-convex optimization



Learning Half-spaces ( W*X >  threshold)

On simple log-regression-like problems, path 
weights take through the loss. Left: traditional, 
right: optimise first ‘direction’ (until convergence: 
red line) then ‘scale’ (move on red line).

By row: least squares, logistic, sigmoidal 
regression; same problem. Note how right one 
always takes the ‘same path’ until the line.

Regardless of ‘row’, weight direction ‘should be the 
same always, but on regular GD, it takes different 
paths.

Later empirically show this works too if optimising 
direction & scale separately

GD GDNP (normal params)



Learning Half-spaces result

● For S-spheres, there’s proof that weights are optimisable ‘linearly’ with 
respect to target loss (L<= eps). For unit spheres (WN), no proof yet.

● Proof relies on data gaussianity (but empirically that doesn’t matter(?))
● Proof relies on separate training direction and scale training (they claim: 

mainly to simplify the theoretical analysis)
● Proof does NOT rely on convexity of loss (cause it ain’t, duh)

A = 
accelerated



Dependencies between layers Loss (1) & gradient magnitude (2)

Dependencies between weight 
updates (layer {2,3,5,6} wrt layer 4) 
(BN left, no BN right). BN reduces 
dependencies as training goes

Proves: Given Gaussian inputs – 
the optimal direction of a given layer 
is independent of all downstream 
layers (required if want to prove 
fast training without training 
direction/scale separately)

“Batch Normalization layers indeed 
simplifies the networks curvature 
structure in w”



Dependencies between layers ICS is defined as ‘how gradient 
of layer X’ changes when 
applying the gradient of the 
previous layer(s).

Counterpoint to previous paper, 
the ones below shows ‘how 
gradient of layer 2/3/5/6’ changes 
as we move in direction of 
gradient of layer 4.



How does Batch norm 
help 
GENERALISATION?



The idea is within original paper



Healthy noise

Assume manifold such as right

● Adding noise may enhance the size of data and 
improve generalisation (data augmentation)

● Adding noise may ‘join’ parts of the manifold 
(different manifold than real one), changing 
the topology, changing what must be learnt, so 
how much noise is good?

● Not adding noise permits orange stragglers in 
the center to be overfitted more easily



How much Noise does BN cause?

● Let μ, σ be the ‘true’ mean and std of a neuron computed on the dataset
● Let μ’, σ’ be the mean and std of a neuron computed on a batch of n elements 

(pre-normalisation). What is the ‘expected noise?’
● The variance of the estimator μ’ Var(μ’) = σ2/n. As n increases (larger 

batches) it is less ‘wrong’, proportional to variance
● The variance of the estimator sigma’ depends on the kurtosis (4th moment 

μ4) and σ4; (also tends to 0 with n -> infinity)
● ‘Running statistics’ slowly reduce the noise (increase n)
● Summary: mean and variance estimators used have a ‘measurable’ 

noise, depends on BatchSize (n) (layernorm plot confirms it)



Activation noise

● Small perturbations in an activation can have a similar effect to input 
perturbations

● But now, activation correlation may mean that noise is ‘discardable’ if two 
other neurons compute something similar

○ More formally, it can learn linear combinations of neurons to cancel added/multiplied noise
● Small perturbation in most neurons in general could work the same, achieving 

de-overfitting impact in the loss landscape (reduction of sharp minima through 
a better approximation of p(X)

● Another example: Dropout

Hypothesis: BN is length-direction decoupling + Healthy noise



Activation noise

● Only one example seen of this, in Parametric Noise Injection
● Paper introduces noise as a way to reduce adversarial 

effectivity, to a very impactful degree, at the cost of accuracy
● Paper does not show noise in training is effective for 

generalisation, but it does show it is effective for adversarial 
attacks

● It is possible both effects are related



Summary

● BN implicitly reparametrises the 
network, like WN or NP

● BN reparametrises differently than 
WN, taking covariances into account

● Reparametrisation causes length 
and direction of weights to be 
decoupled, provably improving 
convergence speeds

● The important part is the scaling, not 
the biases

● When is BN a good idea? It’s pretty 
much free, so wherever you want to 
put it

● Should I use the additional 
parameters? In most cases they 
don’t add expressivity, but they help 
with optimising, so yes

● Before or after activation function? If 
before, make sure to put the 
additional parameters. Do what you 
want otherwise.



Parametric Noise Injection
Idea: use noise like this to prevent adversarial attacks.

How much? Let network decide: add a parameter (ai, one for each layer) which we 
multiply by gaussian noise (std proportional-ish to the activation std), and add to 
activations. Noise being 0-centered means that it is random whether ai increases 
or decreases in each activation. With momentum, it tends to 0.

They add ‘robust optimisation’, adding noise to input in a specific way, so that ai 
does not converge to 0 (beyond scope of this presentation)



V:Noise in loss?

What if we train with a similar approach: get noise and add it/multiply it 
by activations. Noise is pondered by some weights gamma/beta (each 
layer, neuron, or global), which in the loss are set to maximise (with a 
hyperparam on how much we care).

NN should be BN’d or isomorphised before to ensure activations 
cannot grow too much (else noise optimisation is trivial)

Effect on adversarial attacks? Potentially interesting.


